Objectives: In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes.
Methods: The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled.
Conclusions: When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2023.114403 | DOI Listing |
Diabetes
January 2025
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
Background: Globally, Breast Cancer (BC) is the most frequent cancer in women and has a major negative impact on the physical and emotional well-being of its patients as well as one of the most common cancers to be diagnosed. Numerous studies have been published to identify various molecular pathways, including PI3K/AKT/PTEN. Moreover, growing evidence suggests that miRNAs have been found to play a vital role in the growth and carcinogenesis of tumors.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
Cotton GhMAX2 positively regulates fiber elongation by mediating the degradation of GhS1FA, which transcriptionally represses GhKCS9 expression. Strigolactones (SLs) are known to promote cotton fiber development. However, the precise molecular relationship between SL signaling and fiber cell elongation remains unclear.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!