In this work, an agar-graphene oxide hydrogel was prepared to adsorb Cd (II) and Methyl Violet (MV) from water. The hydrogel was synthesised and characterised through SEM and EDS. Kinetic, equilibrium and regeneration studies were carried out, in which Langmuir, Freundlich and Sips isotherm models were fitted to the equilibrium experimental data; and regarding the kinetics, studies were conducted by modelling experimental data considering both empirical and phenomenological models. SEM and EDS have shown the composite present a 3D-disordered porous microstructure and that it is mainly constituted of C and O. Sips model fitted well to Cd (II) (R = 0.968 and χ= 0.176) and MV (R = 0.993 and χ= 0.783). The q values for MV and Cd (II) were 76.65 and 11.70 mg.g, respectively. Pseudo-order models satisfactorily described Cd (II) and MV adsorption kinetics with R > 0.90. Regeneration experiments revealed an outstanding reuse capacity of the adsorbent after three cycles of adsorption-desorption for both Cd (II) and MV. This study evidences the possibility of a feasible adsorbent for Cd (II) and MV removal from water for successive cycles of use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2023.2198732 | DOI Listing |
Luminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.
This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.
View Article and Find Full Text PDFSci Adv
January 2025
Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA.
Gram staining has been a frequently used staining protocol in microbiology. It is vulnerable to staining artifacts due to, e.g.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Rottl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!