Distractor-evoked deviation in saccade direction suggests an asymmetric representation of the upper and lower visual fields on oculomotor maps.

Atten Percept Psychophys

Center for Psychological Sciences, Zhejiang University, 148 Tianmushan Rd., 310028, Hangzhou, China.

Published: May 2023

The programming of rapid eye movements or "saccades" involves a large collection of neural substrates. The subcortical oculomotor center - the superior colliculus (SC) - contains a topographical motor map that encodes saccade vectors. Using a visual distractor task, the present study examined a classic model of the SC motor map, which assumes a symmetrical representation of the upper visual field (UVF) and lower visual field (LVF). Visual distractors are known to attract or repel the saccade trajectory, depending on their angular distance from the target. In the present study, the distractor (if presented) was placed at a location that mirrored the target in the opposite visual field (upper or lower). The symmetrical SC model predicts equivalent directional deviations for saccades into the UVF and LVF. The results, however, showed that the directional deviations evoked by visual distractors were much stronger for saccades directed to the LVF. We argue that this observation is consistent with the recent neurophysiological finding that the LVF is relatively under-represented, as compared to the UVF, in the SC and possibly in other oculomotor centers. We conclude the paper with a suggested revision to the SC model.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13414-023-02701-9DOI Listing

Publication Analysis

Top Keywords

visual field
12
representation upper
8
upper lower
8
lower visual
8
motor map
8
visual distractors
8
directional deviations
8
visual
7
distractor-evoked deviation
4
deviation saccade
4

Similar Publications

Background: We aimed to assess impairments on health-related quality of life, and mental health resulting from Retinal artery occlusion (RAO) with monocular visual field loss and posterior circulation ischemic stroke (PCIS) with full or partial hemianopia using patient-reported outcome measures (PROMs).

Methods: In a prospective study, consecutive patients with acute RAO on fundoscopy and PCIS on imaging were recruited during their surveillance on a stroke unit over a period of 15 months. Baseline characteristics were determined from medical records and interviews.

View Article and Find Full Text PDF

A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis.

Sensors (Basel)

January 2025

Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.

Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is the most prevalent form of osteoarthritis and a leading cause of chronic pain in adults. This study aimed to compare the short-term effects of extracorporeal shock wave therapy (ESWT), low-level laser therapy (LLLT), and pulsed electromagnetic field therapy (PEMF) on pain, function, and quality of life in patients with knee OA. A hundred and twenty patients with Kellgren-Lawrence grade 2-3 knee OA were randomized into four groups: ESWT (once a week for three sessions), LLLT (twice a week for eight sessions), PEMF (twice a week for eight sessions), and a control group with 30 patients in each group.

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

Overview and Prospects of DNA Sequence Visualization.

Int J Mol Sci

January 2025

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China.

Due to advances in big data technology, deep learning, and knowledge engineering, biological sequence visualization has been extensively explored. In the post-genome era, biological sequence visualization enables the visual representation of both structured and unstructured biological sequence data. However, a universal visualization method for all types of sequences has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!