Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Osteonecrosis of the femoral head (ONFH) is a disorder that causes a collapse of the femoral head, requiring subsequent total hip replacement. However, the pathogenesis of ONFH remains largely unclear. Herein, exosome metabolomics analyses were conducted to explore the pathophysiology of ONFH.
Objectives: This study aimed to conduct metabolic profiling of bone-derived exosomes of ONFH.
Methods: 30 ONFH patients and 30 femoral neck fracture (FNF) patients were included in this study. Exosomes were harvested from the femoral head by using ultracentrifugation. Ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was performed in combination with multivariate statistical analysis to reveal and provided new insight into identify the global metabolic profile of ONFH.
Results: The results of transmission electron microscope (TEM), nanoparticle tracking analysis (NTA), and Western blots indicated that the microvesicles isolated from the femoral head were exosomes. Several compounds were identified, including lipids and lipid-like molecules, amino acids, peptides, organooxygen compounds. 44 differential metabolites were screened between ONFH and FNF patients. The up-and down-regulation of Riboflavin metabolism, Pantothenate and CoA biosynthesis, Glycerophospholipid metabolism, and Sphingolipid metabolism were associated with ONFH pathophysiology.
Conclusion: Our results suggest that metabolomics has huge prospects for elucidating pathophysiology of ONFH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11306-023-01986-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!