Aggregation and accumulation of amyloid-β peptide (Aβ) are a critical trigger for the onset of Alzheimer's disease (AD). While the plaques are the most outstanding Aβ pathological feature, much of the recent research emphasis has been on soluble Aβ species because of their diffusible, proinflammatory, and toxic properties. The focus on soluble aggregated Aβ species has also increased the interest in antibodies that are selective for different Aβ conformations. In the current study, we developed and characterized a new class of monoclonal antibodies (referred to as mAbSL) that are selective for Aβ protofibrils. Cloning and sequencing of the heavy and light chain variable regions for multiple antibodies identified sequence characteristics that may impart the conformational selectivity by the antibodies. Transfection of FreeStyle 293F cells with the plasmids permitted in-house expression and purification of mAbSL antibodies along with non-conformation-selective Aβ monoclonal antibodies (Aβ mAbs). Several of the purified mAbSL antibodies demonstrated significant affinity and selectivity for Aβ42 protofibrils compared with Aβ42 monomers and Aβ42 fibrils. Competition ELISA assays assessing the best overall antibody, mAbSL 113, yielded affinity constants of 7 nM for the antibody-Aβ42 protofibril interaction, while the affinity for either Aβ42 monomers or Aβ42 fibrils was roughly 80 times higher. mAbSL 113 significantly inhibited Aβ42 monomer aggregation by a unique mechanism compared with the inhibition displayed by Aβ mAb 513. Aβ42 protofibril dynamics were also markedly altered in the presence of mAbSL 113, whereby insoluble complex formation and protofibril deposition were stimulated by the antibody at low substoichiometric molar ratios. As the field contemplates the therapeutic effectiveness of Aβ conformation-selective antibodies, the findings presented here demonstrate new information on a monoclonal antibody that selectively targets Aβ protofibrils and impacts Aβ dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.15817 | DOI Listing |
J Biol Chem
February 2023
Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA. Electronic address:
The Saccharomyces cerevisiae Yta7 is a chromatin remodeler harboring a histone-interacting bromodomain (BRD) and two AAA+ modules. It is not well understood how Yta7 recognizes the histone H3 tail to promote nucleosome disassembly for DNA replication or RNA transcription. By cryo-EM analysis, here we show that Yta7 assembles a three-tiered hexamer with a top BRD tier, a middle AAA1 tier, and a bottom AAA2 tier.
View Article and Find Full Text PDFJ Environ Manage
February 2022
Department of Civil Engineering, Lassonde School of Engineering, York University, ON, M3J1P3, Canada. Electronic address:
The interest in the A-stage of the adsorption/bio-oxidation (A/B) process has considerably increased due to its capacity of carbon redirection to the solids stream. Induced by its flexible and compact design, the Alternating Activated Adsorption (AAA) was recently implemented in full-scale as an alternative A-stage system. However, the literature on such a system is scarce.
View Article and Find Full Text PDFCell Rep
June 2019
Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK. Electronic address:
AAA+ proteins form asymmetric hexameric rings that hydrolyze ATP and thread substrate proteins through a central channel via mobile substrate-binding pore loops. Understanding how ATPase and threading activities are regulated and intertwined is key to understanding the AAA+ protein mechanism. We studied the disaggregase ClpB, which contains tandem ATPase domains (AAA1, AAA2) and shifts between low and high ATPase and threading activities.
View Article and Find Full Text PDFElife
November 2018
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
The biogenesis of 60S ribosomal subunits is initiated in the nucleus where rRNAs and proteins form pre-60S particles. These pre-60S particles mature by transiently interacting with various assembly factors. The ~5000 amino-acid AAA+ ATPase Rea1 (or Midasin) generates force to mechanically remove assembly factors from pre-60S particles, which promotes their export to the cytosol.
View Article and Find Full Text PDFJ Biol Chem
December 2018
From the Department of Biology, Faculty of Science and Engineering and
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!