Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286236PMC
http://dx.doi.org/10.1016/j.neuroimage.2023.120059DOI Listing

Publication Analysis

Top Keywords

sensorimotor-association axis
16
human connectome
16
principal gradient
12
individual differences
12
connectivity structure
8
range connectivity
8
connectivity
6
human
5
omnipresence sensorimotor-association
4
axis
4

Similar Publications

Background: The spatial layout of large-scale functional brain networks exhibits considerable inter-individual variability, especially in the association cortex. Research has demonstrated a link between early socioeconomic status (SES) and variations in both brain structure and function, which are further associated with cognitive and mental health outcomes. However, the extent to which SES is associated with individual differences in personalized functional network topography during childhood remains largely unexplored.

View Article and Find Full Text PDF

Unlabelled: Humans and nonhuman primate studies suggest that timing and tempo of cortical development varies neuroanatomically along a sensorimotor-to-association (S-A) axis. Prior human studies have reported a principal S-A axis across various modalities, but largely rely on cross-sectional samples with wide age-ranges. Here, we investigate developmental changes and individual variability in cortical organization along the S-A axis between the ages of 9-13 years using a large, longitudinal sample (N = 2487-3747, 46-50% female) from the Adolescent Brain Cognitive Development Study (ABCD Study®).

View Article and Find Full Text PDF

Childhood and adolescence are associated with protracted developmental remodeling of cortico-cortical structural connectivity. However, how heterochronous development in white matter structural connectivity spatially and temporally unfolds across the macroscale human connectome remains unknown. Leveraging non-invasive diffusion MRI data from both cross-sectional (N = 590) and longitudinal (baseline: N = 3,949; two-year follow-up: N = 3,155) developmental datasets, we found that structural connectivity development diverges along a pre-defined sensorimotor-association (S-A) connectional axis from ages 8.

View Article and Find Full Text PDF

A sensorimotor-association axis of thalamocortical connection development.

bioRxiv

June 2024

Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth.

View Article and Find Full Text PDF

Human neuroimaging studies consistently show multimodal patterns of variability along a key principle of macroscale cortical organization - the sensorimotor-association (S-A) axis. However, little is known about day-to-day fluctuations in functional activity along this axis within an individual, including sex-specific neuroendocrine factors contributing to such transient changes. We leveraged data from two densely sampled healthy young adults, one female and one male, to investigate intra-individual daily variability along the S-A axis, which we computed as our measure of functional cortical organization by reducing the dimensionality of functional connectivity matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!