Phytochrome-interacting factors (PIFs) play important roles in light-mediated secondary metabolism; however, the roles of PIFs in grape fruit carotenogenesis remain unclear. Here, by identifying the PIF family genes in grapes, we focused on the role of VvPIF1 in carotenoid metabolism. During grape berry development, VvPIF1 expression was negatively correlated with carotenoid accumulation and the transcription of phytoene synthase 1/2 (VvPSY1/2), which encodes the major flux-controlling enzymes for carotenoid biosynthesis. Light significantly repressed VvPIF1 expression, but induced the expression of carotenogenic genes including VvPSY1/2. VvPIF1 functioned as a nucleus-localized protein and interacted with the light photoreceptor VvphyB. Overexpression of VvPIF1 resulted in the downregulation of the endogenous PIF1 gene, which may unexpectedly induce carotenoid accumulation and PSY expression in tobacco leaves. The transgenic grape leaves and tomato fruits with high VvPIF1 expression produced a significant decrease in carotenoid concentrations, with suppressed transcription of PSY and other carotenogenic genes. Further biochemical assays demonstrated that VvPIF1 bound directly to the promoters of VvPSY1/2 to inhibit their transcription. Collectively, we conclude that VvPIF1 negatively regulates carotenoid biosynthesis by repressing VvPSY expression in grapes. These findings shed light on the role and mode of action of PIFs in the carotenoid regulatory network of grapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2023.111693 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.
Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.
View Article and Find Full Text PDFHeliyon
January 2025
University of Campinas, School of Food Engineering, 13056-405, Campinas, SP, Brazil.
The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Gynecology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
Lycopene (LYC) is an extremely powerful antioxidant with the potential to treat a range of diseases and to inhibit ferroptosis. This research aims to elucidate how LYC impacts polycystic ovarian syndrome (PCOS) and the action mechanisms. A PCOS rat model was constructed by injecting DHEA.
View Article and Find Full Text PDFBMC Genomics
January 2025
Guangdong Research Center On Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
Background: Spotted scat, a marine aquaculture fish, has variable body color development stages during their ontogenesis. However, the regulatory mechanism of body color patterns formation was poorly understood. Thyroid hormones (TH) function as an important endocrine factor in regulating metamorphosis.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!