A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arylidine extensions of 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-benzenesulfonamide derivatives: Synthesis, computational simulations and biological evaluation as tumor-associated carbonic anhydrase inhibitors. | LitMetric

Arylidine extensions of 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-benzenesulfonamide derivatives: Synthesis, computational simulations and biological evaluation as tumor-associated carbonic anhydrase inhibitors.

Bioorg Chem

Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt. Electronic address:

Published: June 2023

Several pyrazole-benzene sulfonamides were reported as human carbonic anhydrase inhibitors. In this research work, a design of Arylidine-extented 5-oxo-pyrazole benzenesulfonamides (4a-i), (8a-d) and (10a-e) were reported based on tail-approach design. Beside the reported synthetic procedures and confirmation by different analytical procedures, a DFT study was employed to confirm the Z- conformer of the synthesized compounds. In vitro biological assay against four different human carbonic anhydrases took place and based on the results, SAR study was illustrated and selectivity indexes were discussed. Compounds 4g and 8a exhibited the best inhibitory activity among the target compounds with values (hCAIX: K = 71.2 nM, hCAXII: K = 22.5 nM), (hCAIX: K = 34.3 nM, hCAXII: K = 74.3 nM); respectively. Both of them were subjected to cellular assay against two different cancer cell lines with expressing nature to hCA isoforms under both normoxic and hypoxic conditions. Compound 4g showed the highest cytotoxic activity against MCF-7 cancer cell line (IC = 4.15 µM under hypoxic conditions and IC = 8.59 µM under normoxic conditions) compared to the reference drug doxorubicin under normoxic, (IC = 4.34 µM), and hypoxic, (IC = 2.23 µM), conditions. Further cellular investigations were employed to study the effect of this compound on the cell cycle of the affected cell line. Finally, molecular docking supported by molecular dynamic simulation was utilized to understand the mechanism of the inhibitory activity of two of these compounds - as representative examples- based on the designed rational.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2023.106492DOI Listing

Publication Analysis

Top Keywords

carbonic anhydrase
8
anhydrase inhibitors
8
human carbonic
8
inhibitory activity
8
cancer cell
8
hypoxic conditions
8
arylidine extensions
4
extensions 3-methyl-5-oxo-45-dihydro-1h-pyrazol-benzenesulfonamide
4
3-methyl-5-oxo-45-dihydro-1h-pyrazol-benzenesulfonamide derivatives
4
derivatives synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!