A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hierarchical camellia-like metal-organic frameworks via a bimetal competitive coordination combined with alkaline-assisted strategy for boosting selective fluoride removal from brick tea. | LitMetric

Developing an efficient and easy scale-up adsorbent with excellent fluoride adsorption and selectivity from brick tea is urgently desired. However, the separation of fluoride from tea is particularly challenging due to it contains abundant active compounds. Herein, we report ultrahigh fluoride adsorption from brick tea by a hierarchical camellia-like bimetallic metal-organic frameworks (MOFs). The hierarchical camellia-like CaAlFu is fabricated via a Ca/Al competitive coordination combined with alkaline-assisted strategy to tailor the morphology and porous structure. Subsequently, we systematically explore how the kinetic, thermodynamic, pH, and coexisting ions parameters employed during fluoride adsorption influence the resulting uptake behavior of CaAlFu. Further, sensory evaluation of the tea after adsorption is explored to determine the optimal dose that makes CaAlFu as a practical adsorbent for application. Importantly, the fluoride adsorption capacity of optical CaAlFu with mixed CaAl metals molar ratio of 2:1 is 3.15 and 2.11 times higher than that of pristine CaFu and AlFu, respectively. Theoretical results reveal that the boosting selective fluoride removal can be ascribed to the specific interactions between fluoride and CaAl coordinatively unsaturated bimetallic centers. These results present an effective design strategy for the construction of bimetallic MOFs with hierarchically porous structures for broad prospect in adsorption-based applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.137DOI Listing

Publication Analysis

Top Keywords

fluoride adsorption
16
hierarchical camellia-like
12
brick tea
12
metal-organic frameworks
8
competitive coordination
8
coordination combined
8
combined alkaline-assisted
8
alkaline-assisted strategy
8
boosting selective
8
fluoride
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!