A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating spatial and temporal patterns of tick exposure in the United States using community science data submitted through a smartphone application. | LitMetric

Evaluating spatial and temporal patterns of tick exposure in the United States using community science data submitted through a smartphone application.

Ticks Tick Borne Dis

Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York City, NY 10027, USA; Paul G. Allen School for Global Animal Health, Washington State University, 1155 NE College Ave, Pullman, WA 99164, USA.

Published: July 2023

AI Article Synopsis

  • Research initiatives like community science and citizen science are shedding light on tick exposures in the U.S., but data collection methods may have limitations regarding travel history and tick identification.
  • The Tick App received over 11,000 submissions from 2019-2021, revealing that most tick encounters happened in the Midwest and Northeast, primarily involving humans (71%) and peri-domestic settings (51%).
  • A streamlined identification system using a few questions about tick characteristics was moderately successful, with frequent users showing better accuracy in identifying tick species like Dermacentor variabilis.

Article Abstract

Research initiatives that engage the public (i.e., community science or citizen science) increasingly provide insights into tick exposures in the United States. However, these data have important caveats, particularly with respect to reported travel history and tick identification. Here, we assessed whether a smartphone application, The Tick App, provides reliable and novel insights into tick exposures across three domains - travel history, broad spatial and temporal patterns of species-specific encounters, and tick identification. During 2019-2021, we received 11,424 tick encounter submissions from across the United States, with nearly all generated in the Midwest and Northeast regions. Encounters were predominantly with human hosts (71%); although one-fourth of ticks were found on animals. Half of the encounters (51%) consisted of self-reported peri‑domestic exposures, while 37% consisted of self-reported recreational exposures. Using phone-based location services, we detected differences in travel history outside of the users' county of residence along an urbanicity gradient. Approximately 75% of users from large metropolitan and rural counties had travel out-of-county in the four days prior to tick detection, whereas an estimated 50-60% of users from smaller metropolitan areas did. Furthermore, we generated tick encounter maps for Dermacentor variabilis and Ixodes scapularis that partially accounted for travel history and overall mirrored previously published species distributions. Finally, we evaluated whether a streamlined three-question sequence (on tick size, feeding status, and color) would inform a simple algorithm to optimize image-based tick identification. Visual aides of tick coloration and size engaged and guided users towards species and life stage classification moderately well, with 56% of one-time submitters correctly selecting photos of D. variabilis adults and 76% of frequent-submitters correctly selecting photos of D. variabilis adults. Together, these results indicate the importance of bolstering the use of smartphone applications to engage community scientists and complement other active and passive tick surveillance systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ttbdis.2023.102163DOI Listing

Publication Analysis

Top Keywords

travel history
16
tick
13
united states
12
tick identification
12
spatial temporal
8
temporal patterns
8
community science
8
smartphone application
8
insights tick
8
tick exposures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!