Synthesis and bioactivity evaluation of a myelin-specific contrast agent for magnetic resonance imaging of myelination in central nervous system.

Bioorg Med Chem

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

Published: April 2023

Demyelination exists in many neurological diseases of nervous system, such as stroke. Currently, magnetic resonance imaging (MRI) has been the main tool for diagnosing and monitoring the myelin related diseases. However, the conventional MRI unable to distinguish demyelinating lesions from other inflammatory lesions. To address this problem, we have designed and prepared a myelin specific magnetic resonance contrast agent, Gd-DTDAS, which was based myelin specific moiety MeDAS and Gd-DTPA. In this work, we verified the specificity and sensitivity of Gd-DTDAS to myelin. Moreover, we investigated the specific binding ability of Gd-DTDAS to myelin sheath in the MCAO mice models. The in vivo imaging results showed that Gd-DTDAS can bind to the undamaged myelin sheath in the BBB disruption areas, and in turn reduce the relaxation time. The fluorescence images also showed significant fluorescence in the brain right infarct area of the MCAO model mice with administration of Gd-DTDAS. The above results confirmed that Gd-DTDAS could be preferentially distributed in areas with high myelination and can detect focally induced demyelination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2023.117257DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
contrast agent
8
resonance imaging
8
nervous system
8
myelin specific
8
gd-dtdas myelin
8
myelin sheath
8
myelin
6
gd-dtdas
6
synthesis bioactivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!