AI Article Synopsis

  • Hot-spots in plasmonic nanocavities can enhance photocatalytic reactions, improving solar-to-chemical energy conversion.
  • The study investigates how varying distances between nanoparticles affects catalytic behavior using 4-iodothiophenol and surface-enhanced Raman spectroscopy.
  • Results show that reducing interparticle distance from 20 to 10 nm doubles the reaction rate, but further reductions don't significantly enhance the rate despite a stronger local field, offering insights for future plasmonic photocatalytic designs.

Article Abstract

Strong hot-spots can facilitate photocatalytic reactions potentially providing effective solar-to-chemical energy conversion pathways. Although it is well-known that the local electromagnetic field in plasmonic nanocavities increases as the cavity size reduces, the influence of hot-spots on photocatalytic reactions remains elusive. Herein, we explored hot-spot dependent catalytic behaviors on a highly controlled platform with varying interparticle distances. Plasmon-meditated dehalogenation of 4-iodothiophenol was employed to observe time-resolved catalytic behaviors via surface-enhanced Raman spectroscopy on dimers with 5, 10, 20, and 30 nm interparticle distances. As a result, we show that by reducing the gap from 20 to 10 nm, the reaction rate can be sped up more than 2 times. Further reduction in the interparticle distance did not improve reaction rate significantly although the maximum local-field was ∼2.3-fold stronger. Our combined experimental and theoretical study provides valuable insights in designing novel plasmonic photocatalytic platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00219DOI Listing

Publication Analysis

Top Keywords

photocatalytic reactions
8
catalytic behaviors
8
interparticle distances
8
reaction rate
8
investigating plasmonic
4
plasmonic catalysis
4
catalysis kinetics
4
kinetics hot-spot
4
hot-spot engineered
4
engineered nanoantennae
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!