Gaussian and exponentially modified Gaussian functions were incorporated into integrating algorithms used by an open-source, cross-platform tool called CycloBranch. The quantitation is demonstrated on bacterial pyoverdines separated by fine isotope features. Using our algorithm, we can separate the m/z values 694.25802 and 694.26731 (a 0.009 Da difference), where the former belongs to the most intense peak of pyoverdine D (PvdD), and the latter to the second most intense peak of pyoverdine E (PvdE) in the respective isotopic clusters of [M + Fe-H] ions. The areas under chromatographic curves of standards were analyzed for the limit of detection (LOD), limit of quantitation (LOQ), and regression coefficient calculations. The quantitative module returned a LOD and LOQ of 1.4 and 4.3 ng/mL, respectively, for both PvdD and PvdE in human urine. If present and detected in mass spectra, the intensities of user-defined [M + H], [M + Na], [M + K], [M + Fe-H], or other ion types, can be accumulated and used for quantitation. The quantitation result is returned by CycloBranch in seconds or minutes, contrary to an hours-long manual approach, prone to user-born errors originating from necessary copying among various software environments. Native Bruker, Waters, Thermo, txt, mgf, mzML, and mzXML data formats are supported in CycloBranch, which is freely available at https://ms.biomed.cas.cz/cyclobranch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/14690667231164766 | DOI Listing |
Materials (Basel)
December 2024
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
Narrow-gap InN is a desirable candidate for near-infrared (NIR) optical communication applications. However, the absence of lattice-matched substrates impedes the fabrication of high-quality InN. In this paper, we employed Molecular Beam Epitaxy (MBE) to grow nanostructured InN with distinct growth mechanisms.
View Article and Find Full Text PDFLife (Basel)
December 2024
Graduate School of Physical Education, Myongji University, Yongin 17058, Republic of Korea.
This study analyzed the effects of an 8-week diaphragmatic core training program on postural stability during high-intensity squats and examined its efficacy in injury prevention and performance enhancement. Thirty-seven male participants were randomly assigned to three groups: diaphragmatic core training group (DCTG, n = 12), core training group (CTG, n = 13), and control group (CG, n = 12). Outcome measurements included diaphragm thickness, respiratory function (mean and maximal respiratory pressures), and squat postural stability (distance between the sacral and upper body center points, peak trunk extension moment, peak knee flexion moment, and dynamic postural stability index).
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Sport and Exercise Science, Paris Lodron University Salzburg, Salzburg, Austria.
Introduction: Our recent meta-analyses have demonstrated that high-intensity interval training (HIIT) causes a range of mean changes in various measures and predictors of endurance and sprint performance in athletes. Here, we extend the analyses to relationships between mean changes of these measures and consider implications for understanding and improving HIIT that were not apparent in the previous analyses.
Methods: The data were mean changes from HIIT with highly trained endurance and elite other (mainly team sport) athletes in studies where two or more measures or predictors of performance were available.
Mass Spectrom (Tokyo)
December 2024
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.
Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!