Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lactobacillus species is one of the most commonly used probiotics with a wide range of health-promoting effects, and beneficial effects of the surface protein of the lactobacillus could potentially be involved in the action of probiotics in the gastrointestinal tract. In this study, the anti-inflammatory effect of LPxTG-motif surface protein (LMP) derived from Limosilactobacillus reuteri SH 23 was assessed using a mouse model of colitis induced by dextran sodium sulfate (DSS). The results showed that LMP has the inhibition properties upon the DSS-induced ulcerative colitis of mice via the MAPK-dependent NF-κB pathway. The inflammatory factors TNF-α and IL-6 were inhibited, and the IL-10 secretion was enhanced in the LMP-treated DSS mice model. Furthermore, the diversity of the intestinal microbiota bacteria in this treated group was also influenced, including the increase in the abundance of Lactobacillus and Akkermansia genus in the LMP-treated mice groups, and there is a positive correlation between the IL-10 cytokines with the changes in the intestinal microbiota Lactobacillus and Akkermansia. Therefore, LMP derived from the Limosilactobacillus reuteri SH 23 has the potential to alleviate inflammatory diseases through the balance of the intestinal flora with the inhibition of the inflammatory factors in the NF-κB pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.2022-0252-RR | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!