Cotton, the most important economic crop in the world, displays strong hybrid vigor, and has long been a subject for hybrid cultivar breeding. Here, advances in the theoretical and applied research in cotton heterosis along with its hybrid cultivar development by hand-emasculation and pollination (HEP), cytoplasmic (CMS) and genic male sterile lines (GMS) mainly in China during the past few decades are presented in this review. Three types of hybrids produced by HEP, CMS and GMS facilitating hybrid seed production with hand-pollination have been developed and are being planted simultaneously in cotton production. However, most hybrids commercially planted in production are produced by HEP, therefore, F seeds are being extensively planted due to the high cost to produce F seed. F generations of these combinations exceed the check cultivars in yield usually up to 5~15%. GMS genes (ms and msms) used in hybrid seed production and casual mitochondrial genes for G. harknessii CMS have been cloned. Challenges and opportunities in cotton heterosis and future hybrid cultivar development in cotton are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-023-04334-w | DOI Listing |
Ann Bot
January 2025
Graduate School of Human Development and Environment, Kobe University, Nada-ku, Kobe, 657-8501, Japan.
Background And Aims: Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe.
View Article and Find Full Text PDFNat Commun
January 2025
CIRAD, UMR AGAP Institut, Montpellier, France.
Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Zoology, University of Gour Banga, Malda, 732103, India.
Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.
View Article and Find Full Text PDFACS Omega
January 2025
The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
The nonvolatile and volatile compounds in the peels of 13 cultivars (4 mandarins, 5 tangerines, and 4 hybrids) and 5 (sweet oranges) cultivars were analyzed. Initially, 66 volatile compounds were detected using gas chromatography-mass spectrometry (GC-MS). Tangerines were distinguished from other citrus cultivars (mandarins, sweet oranges, hybrids) by having higher volatile oil extraction rates and higher relative contents of o-Cymene, α-Terpinene, d-α-Pinene, Terpinolene, γ-Terpinene, l-β-Pinene, and 3-Thujene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!