A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ground Reaction Force and Moment Estimation through EMG Sensing Using Long Short-Term Memory Network during Posture Coordination. | LitMetric

Motion prediction based on kinematic information such as body segment displacement and joint angle has been widely studied. Because motions originate from forces, it is beneficial to estimate dynamic information, such as the ground reaction force (GRF), in addition to kinematic information for advanced motion prediction. In this study, we proposed a method to estimate GRF and ground reaction moment (GRM) from electromyography (EMG) in combination with and without an inertial measurement unit (IMU) sensor using a machine learning technique. A long short-term memory network, which is suitable for processing long time-span data, was constructed with EMG and IMU as input data to estimate GRF during posture control and stepping motion. The results demonstrate that the proposed method can provide the GRF estimation with a root mean square error (RMSE) of 8.22 ± 0.97% (mean ± SE) for the posture control motion and 11.17 ± 2.16% (mean ± SE) for the stepping motion. We could confirm that EMG input is essential especially when we need to predict both GRF and GRM with limited numbers of sensors attached under knees. In addition, we developed a GRF visualization system integrated with ongoing motion in a Unity environment. This system enabled the visualization of the GRF vector in 3-dimensional space and provides predictive motion direction based on the estimated GRF, which can be useful for human motion prediction with portable sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044327PMC
http://dx.doi.org/10.34133/cbsystems.0016DOI Listing

Publication Analysis

Top Keywords

ground reaction
12
motion prediction
12
reaction force
8
long short-term
8
short-term memory
8
memory network
8
motion
8
grf
8
proposed method
8
estimate grf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!