Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motion prediction based on kinematic information such as body segment displacement and joint angle has been widely studied. Because motions originate from forces, it is beneficial to estimate dynamic information, such as the ground reaction force (GRF), in addition to kinematic information for advanced motion prediction. In this study, we proposed a method to estimate GRF and ground reaction moment (GRM) from electromyography (EMG) in combination with and without an inertial measurement unit (IMU) sensor using a machine learning technique. A long short-term memory network, which is suitable for processing long time-span data, was constructed with EMG and IMU as input data to estimate GRF during posture control and stepping motion. The results demonstrate that the proposed method can provide the GRF estimation with a root mean square error (RMSE) of 8.22 ± 0.97% (mean ± SE) for the posture control motion and 11.17 ± 2.16% (mean ± SE) for the stepping motion. We could confirm that EMG input is essential especially when we need to predict both GRF and GRM with limited numbers of sensors attached under knees. In addition, we developed a GRF visualization system integrated with ongoing motion in a Unity environment. This system enabled the visualization of the GRF vector in 3-dimensional space and provides predictive motion direction based on the estimated GRF, which can be useful for human motion prediction with portable sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10044327 | PMC |
http://dx.doi.org/10.34133/cbsystems.0016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!