The mevalonate pathway is an essential metabolic pathway in T cells regulating development, proliferation, survival, differentiation, and effector functions. The mevalonate pathway is a complex, branched pathway composed of many enzymes that ultimately generate cholesterol and nonsterol isoprenoids. T cells must tightly control metabolic flux through the branches of the mevalonate pathway to ensure sufficient isoprenoids and cholesterol are available to meet cellular demands. Unbalanced metabolite flux through the sterol or the nonsterol isoprenoid branch is metabolically inefficient and can have deleterious consequences for T cell fate and function. Accordingly, there is tight regulatory control over metabolic flux through the branches of this essential lipid synthetic pathway. In this review we provide an overview of how the branches of the mevalonate pathway are regulated in T cells and discuss our current understanding of the relationship between mevalonate metabolism, cholesterol homeostasis and T cell function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/imr.13200 | DOI Listing |
J Appl Microbiol
January 2025
Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil.
Aims: To investigate the effects of simvastatin as an antimicrobial, considering its influence on the mevalonate pathway and on the bacterial cell wall of Staphylococcus aureus.
Methods And Results: S. aureus ATCC 29213 and 33591 were exposed to simvastatin in the presence of exogenous mevalonate to determine whether mevalonate could reverse the inhibition.
Free Radic Biol Med
January 2025
Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA. Electronic address:
Coenzyme Q (CoQ) is a critical component of the mitochondrial respiratory chain. CoQ deficiencies often cause a variety of clinical syndromes, often involving encephalopathies. The heterogeneity of clinical manifestations implies different pathomechanisms, reflecting CoQ involvement in several biological processes.
View Article and Find Full Text PDFTheranostics
January 2025
Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME).
View Article and Find Full Text PDFInt Immunol
January 2025
Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription.
View Article and Find Full Text PDFCurr Rheumatol Rev
January 2025
University of Genoa, DISC Department, School of Medical and Pharmaceutical Sciences, Research Center of Osteoporosis and Osteoarticular Pathologies, Italy.
ATP is involved in numerous physiological functions, such as neurotransmission, modulation, and secretion, as well as in cell proliferation, differentiation, and death. While ATP serves an essential intracellular role as a source of energy, it behaves differently in the extracellular environment, where it acts as a signaling molecule capable of activating specific purinergic receptors (P2YRs and P2XRs) that modulate the response to ATP. Extracellular ATP signaling is a dynamic area of research, with particular interest in ATP's effects on inflammatory conditions and pain modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!