A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the Molecular Structural Requirements of Flavonoids as Beta- Secretase-1 Inhibitors Using Molecular Modeling Studies. | LitMetric

Exploring the Molecular Structural Requirements of Flavonoids as Beta- Secretase-1 Inhibitors Using Molecular Modeling Studies.

Curr Drug Discov Technol

Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University Mathura, Uttar Pradesh, India.

Published: June 2023

Background: BACE1 (beta-site amyloid precursor protein (APP) cleaving enzyme) is a key target for Alzheimer's disease research because it catalyses the rate-limiting step in the formation of amyloid protein (Aβ). Natural dietary flavonoids have gained a lot of interest as potential Alzheimer's therapy candidates because of their anti-amyloidogenic, antioxidative, and anti-inflammatory properties. More research is needed, however, to learn more about the specific routes through which flavonoids may have neuroprotective benefits in Alzheimer's disease.

Objective: Here, we report an in silico molecular modeling study for natural compounds, particularly flavonoids, as BACE-1 inhibitors.

Methods: The interactions of flavonoids with the BACE-1 catalytic core were disclosed by demonstrating the predicted docking pose of flavonoids with BACE-1. The stability of flavonoids BACE-1 complex was analyzed by molecular dynamic simulation (standard dynamic cascade).

Results: Our findings imply that these flavonoids, which have methoxy group instead of hydroxy may be promising BACE1 inhibitors that could reduce Aβ formation in Alzheimer's disease. The molecular docking study revealed that flavonoids e bind with the BACE1's wide active site along with the catalytic residues Asp32 and Asp228. Further molecular dynamic investigation revealed that the average RMSD for all complexes ranged from 2.05 to 2.32 Å, indicating that the molecules were relatively stable during MD simulation. The RMSD analyses demonstrate that the flavonoids were structurally stable during the MD simulation. The RMSF was utilised to study the time-dependent fluctuation of the complexes. The N-terminal (~2.5 Å) fluctuates less than the C-terminal (~6.5 Å). Rutin and Hesperidin were highly stable in the catalytic region as compared to other flavonoids like Rhoifolin, Hesperidin, Methylchalcone, Phlorizin and Naringin.

Conclusion: We were able to justify the flavonoids' selectivity for BACE-1 and crossing BBB for the treatment of Alzheimer's disease by using a combination of molecular modelling tools.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570163820666230329090424DOI Listing

Publication Analysis

Top Keywords

flavonoids bace-1
16
alzheimer's disease
12
flavonoids
11
molecular modeling
8
molecular dynamic
8
stable simulation
8
molecular
6
alzheimer's
5
bace-1
5
exploring molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!