The majority of research on Janus particles prepared by solvent evaporation-induced phase separation technique uses models based on interfacial tension or free energy to predict Janus/core-shell morphology. Data-driven predictions, in contrast, utilize multiple samples to identify patterns and outliers. Using machine-learning algorithms and explainable artificial intelligence (XAI) analysis, we developed a model based on a 200-instance data set to predict particle morphology. As model features, simplified molecular input line entry system syntax identifies explanatory variables, including cohesive energy density, molar volume, the Flory-Huggins interaction parameter of polymers, and the solvent solubility parameter. Our most accurate ensemble classifiers predict morphology with an accuracy of 90%. In addition, we employ innovative XAI tools to interpret system behavior, suggesting phase-separated morphology to be most affected by solvent solubility, polymer cohesive energy difference, and blend composition. While polymers with cohesive energy densities above a certain threshold favor the core-shell structure, systems with weak intermolecular interactions favor the Janus structure. The correlation between molar volume and morphology suggests that increasing the size of polymer repeating units favors Janus particles. Additionally, the Janus structure is preferred when the Flory-Huggins interaction parameter exceeds 0.4. XAI analysis introduces feature values that generate the thermodynamically low driving force of phase separation, resulting in kinetically stable morphologies as opposed to thermodynamically stable ones. The Shapley plots of this study also reveal novel methods for creating Janus or core-shell particles based on solvent evaporation-induced phase separation by selecting feature values that strongly favor a given morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c03355 | DOI Listing |
Polymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China.
Poor breathability, inadequate flexibility, bulky wearability, and insufficient gas-adsorption capacity always limit the developments and applications of conventional chemical protective clothing (CPC). To create a lightweight, breathable, and flexible fabric with a high gas-absorption capacity, activated carbon (AC)-loaded poly(m-phenylene isophthalamide) (PMIA) porous composite fibres were fabricated from a mixed wet-spinning process integrated with a solvent-free phase separation process. By manipulating the pore parameters of as-spun composite fibres, the exposure-immobilization of AC particles on the fibre surface can offer a higher gas-absorption capacity and better AC-loading stability.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
-methyladenosine (mA) is a widespread post-transcriptional modification of RNA in eukaryotes. The conserved YTH-domain-containing RNA binding protein has been widely reported to serve as a typical mA reader in various species. However, no studies have reported the mA readers in ().
View Article and Find Full Text PDFToxics
December 2024
School of Resource and Environmental Engineering, Shandong University of Technology, Zibo 255000, China.
The solid phase composition in oily sludge (OS) is a key factor affecting the oil-solid separation of OS. In this paper, the effects and mechanisms of solid-phase particle factors on the oil content of residue phase were investigated in order to improve the oil-solid separation efficiency. Flotation experiments were carried out on single-size sand and mixed-size sand OS consisting of three particle sizes at room temperature without adding flotation reagents.
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
Hydrophobization could improve the moisture resistance of biopolymer-based materials, depending on the methods and materials used, providing benefits for packaging applications. The aim of this study was to compare the effect of increasing concentrations (0-2.0%) of candelilla wax (CW) and oleic acid (OA) on the structural and physicochemical properties, including water affinity, of glycerol-plasticized pea protein isolate (PPI) films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!