Introduction: While Yap and Wwtr1 regulate resident cardiac fibroblast to myofibroblast differentiation following cardiac injury, their role specifically in activated myofibroblasts remains unexplored.

Methods: We assessed the pathophysiological and cellular consequence of genetic depletion of Yap alone ( ; ) or Yap and Wwtr1 ( ; ; ) in adult mouse myofibroblasts following myocardial infarction and identify and validate novel downstream factors specifically in cardiac myofibroblasts that mediate pathological remodeling.

Results: Following myocardial infarction, depletion of Yap in myofibroblasts had minimal effect on heart function while depletion of Yap/Wwtr1 resulted in smaller scars, reduced interstitial fibrosis, and improved ejection fraction and fractional shortening. Single cell RNA sequencing of interstitial cardiac cells 7 days post infarction showed suppression of pro-fibrotic genes in fibroblasts derived from , ; hearts. In vivo myofibroblast depletion of Yap/Wwtr1 as well in vitro knockdown of Yap/Wwtr1 dramatically decreased RNA and protein expression of the matricellular factor Ccn3. Administration of recombinant CCN3 to adult mice following myocardial infarction remarkably aggravated cardiac function and scarring. CCN3 administration drove myocardial gene expression of pro-fibrotic genes in infarcted left ventricles implicating CCN3 as a novel driver of cardiac fibrotic processes following myocardial infarction.

Discussion: Yap/Wwtr1 depletion in myofibroblasts attenuates fibrosis and significantly improves cardiac outcomes after myocardial infarction and we identify as a factor downstream of Yap/Wwtr1 that contributes to adverse cardiac remodeling post MI. Myofibroblast expression of Yap, Wwtr1, and Ccn3 could be further explored as potential therapeutic targets for modulating adverse cardiac remodeling post injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043314PMC
http://dx.doi.org/10.3389/fcvm.2023.1142612DOI Listing

Publication Analysis

Top Keywords

yap wwtr1
16
myocardial infarction
16
adverse cardiac
12
cardiac
10
contributes adverse
8
cardiac outcomes
8
depletion yap
8
infarction identify
8
depletion yap/wwtr1
8
pro-fibrotic genes
8

Similar Publications

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Transient activation of YAP/TAZ confers resistance to morusin-induced apoptosis.

BMC Mol Cell Biol

January 2025

Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

Background: The Hippo signaling pathway involves a kinase cascade that controls phosphorylation of the effector proteins YAP and TAZ, leading to regulation of cell growth, tissue homeostasis, and apoptosis. Morusin, a compound extracted from Morus alba, has shown potential in cancer therapy by targeting multiple signaling pathways, including the PI3K/Akt/mTOR, JAK/STAT, MAPK/ERK, and apoptosis pathways. This study explores the effects of morusin on YAP activation and its implications for apoptosis resistance.

View Article and Find Full Text PDF

Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies.

View Article and Find Full Text PDF

Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited.

View Article and Find Full Text PDF

YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets.

Mol Biol Rep

December 2024

State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!