Withering is an important processing stage in green tea, which contributes to the tea flavor quality. The aim of this work was to comprehensively investigate the changes of chemical features and flavor attributes in Longjing green teas produced with five different withering degrees (moisture content of 75.05, 72.53, 70.07, 68.00, and 64.78%, w.b.). Combined with human sensory evaluation, electronic tongue and chromatic differences analysis, an assessment of the relationship between the withering degree and the sensory quality of Longjing tea was obtained. By using a non-targeted metabolomics approach, 69 significantly differential metabolites were screened. As the withering degree increased, most free amino acids and catechin dimers were increased, largely attributed to the hydrolysis of proteins and catechin oxidative polymerization, respectively. The contents of organic acids as well as phenolic acids and derivatives were reduced. Interestingly, flavone -glycosides decreased overall while flavonol -glycosides increased. The correlation analysis revealed that metabolites such as theasinensin F, theasinensin B, theaflavin, theaflavin-3,3'-gallate, theaflavin-3'-gallate, malic acid, succinic acid, quinic acid, theanine glucoside and galloylglucose had a greater influence on the taste and color of tea infusion (|r| > 0.6,  < 0.05). Overall, an appropriate withering degree at a moisture content of around 70% is more favorable to enhance the Longjing tea quality. These results may enhance the understanding of green tea flavor chemistry associated with withering and provide a theoretical basis for green tea processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043258PMC
http://dx.doi.org/10.3389/fnut.2023.1104926DOI Listing

Publication Analysis

Top Keywords

withering degree
12
sensory quality
8
quality longjing
8
longjing green
8
green tea
8
tea non-targeted
8
non-targeted metabolomics
8
withering
5
tea
5
analyzing influence
4

Similar Publications

To explore the effects of different withering methods on the quality of Congou black tea, this study focused on five different withering methods: natural withering, warm-air withering, sun-natural combined withering, sun withering, and shaking withering. Gas chromatography‒mass spectrometry (GC‒MS), high-performance liquid chromatography (HPLC), and ion-exchange chromatography techniques were used to analyze the nonvolatile and volatile components and composition of the tea. The results revealed significant differences ( < 0.

View Article and Find Full Text PDF

Drought is a major abiotic stress affecting crop yields. Mapping quantitative trait loci (QTLs) and mining genes for drought tolerance in rice are important for identifying gene functions and targets for molecular breeding. Here, we performed linkage analysis of drought tolerance using a recombinant inbred line population derived from Jileng 1 (drought sensitive) and Milyang 23 (drought tolerant).

View Article and Find Full Text PDF

The key aroma components of steamed green tea decoded by sensomics and their changes under different withering degree.

Food Chem

May 2024

National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024.

View Article and Find Full Text PDF

Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1.

BMC Plant Biol

November 2023

College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.

The present study explored the potential role of cold-regulated plasma membrane protein COR413PM1 isolated from Saussurea involucrata (Matsum. & Koidz)(SikCOR413PM1), in enhancing cotton (Gossypium hirsutum) tolerance to cold and drought stresses through transgenic methods. Under cold and drought stresses, the survival rate and the fresh and dry weights of the SikCOR413PM1-overexpressing lines were higher than those of the wild-type plants, and the degree of leaf withering was much lower.

View Article and Find Full Text PDF

The development of tree peony annual shoots is characterized by "withering", which is related to whether there are bud points in the leaf axillaries of annual shoots. However, the mechanism of "withering" in tree peony is still unclear. In this study, 'Fengdan' and 'Luoyanghong' were used to investigate dynamic changes of annual shoots through anatomy, physiology, transcriptome, and metabolome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!