Background: Osteoarthritis (OA) is a prevalent degenerative articular disease for which there is no effective treatment. Progress has been made in mesenchymal stem cell (MSC)-based therapy in OA, and the efficacy has been demonstrated to be a result of paracrine exosomes from MSCs. Decellularized extracellular matrix (dECM) provides an optimum microenvironment for the expansion of MSCs. In the present study, we aimed to investigate whether exosomes isolated from bone marrow mesenchymal stem cells (BMSCs) with dECM pretreatment (dECM-BMSC-Exos) enhance the amelioration of OA.

Methods: Exosomes from BMSCs with or without dECM pretreatment were isolated. We measured and compared the effect of the BMSC-Exo and dECM-BMSC-Exo on interleukin (IL)-1β-induced chondrocytes by analyzing proliferation, anabolism and catabolism, migration and apoptosis in vitro. The in vivo experiment was performed by articular injection of exosomes into DMM mice, followed by histological evaluation of cartilage. MicroRNA sequencing of exosomes was performed on BMSC-Exo and dECM-BMSC-Exo to investigate the underlying mechanism. The function of miR-3473b was validated by rescue studies in vitro and in vivo using antagomir-3473b.

Results: IL-1β-treated chondrocytes treated with dECM-BMSC-Exos showed enhanced proliferation, anabolism, migration and anti-apoptosis properties compared to BMSC-Exos. DMM mice injected with dECM-BMSC-Exo showed better cartilage regeneration than those injected with BMSC-Exo. Interestingly, miR-3473b was significantly elevated in dECM-BMSC-Exos and was found to mediate the protective effect in chondrocytes by targeting phosphatase and tensin homolog (PTEN), which activated the PTEN/AKT signaling pathway.

Conclusions: dECM-BMSC-Exo can enhance the alleviation of osteoarthritis via promoting migration, improving anabolism and inhibiting apoptosis of chondrocytes by upregulating miR-3473b, which targets PTEN.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.3510DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
bone marrow
8
marrow mesenchymal
8
stem cells
8
decellularized extracellular
8
extracellular matrix
8
enhance alleviation
8
alleviation osteoarthritis
8
tensin homolog
8
bmscs decm
8

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

Ultrasonic-Assisted Synthesis and Cytocompatibility Assessment of TiO/SiO Nanoparticles-Impregnated Gum Arabic Nanocomposite: Edible Coating of Dates for Shelf-Life Extension.

Polymers (Basel)

January 2025

Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh P.O. Box 2460, Saudi Arabia.

The post-harvest management of fruit is crucial to preventing its decay and loss. Generally, edible coatings are applied to fruit to avoid decay and microbial contamination. We have used ultrasonication to synthesize TiO and residue-derived biosilica embedded in gum arabic nanocomposite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!