Colloidal route synthesis of quaternary compound CZTS (CuZnSnS) has been anticipated with an inimitable combination of coordinating ligands and solvents using the hot injection technique. CZTS is recognized as one of the worthiest materials for photo-voltaic/catalytic applications due to its exclusive properties (viz., non-toxic, economical, direct bandgap, high absorbance coefficient, etc.). This paper demonstrates the formation of crystalline, single-phased, monodispersed, and electrically passivated CZTS nanoparticles using a distinctive combination of ligands viz. oleic acid (OA)-trioctylphosphine (TOP) and butylamine (BA)-trioctylphosphine (TOP). Detailed optical, structural, and electrochemical studies were done for all CZTS nanoparticles, and the most efficient composition was found using ligands butylamine and TOP. CZTS nanocrystals were rendered hydrophilic via surface-ligand engineering, which was used for photocatalysis studies of organic pollutants. Malachite green (MG) and rhodamine 6G (Rh) for water remediation have great commercial prospects. The unique selling proposition of this work is the rapid synthesis time (~ 45 min) of colloidal CZTS nanocrystals, cost-effective ligand-exchange process, and negligible material wastage (~ 200 µl per 10 ml of pollutant) during photocatalytic experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26603-3DOI Listing

Publication Analysis

Top Keywords

water remediation
8
czts nanoparticles
8
czts nanocrystals
8
czts
6
surface engineering
4
engineering colloidal
4
colloidal quaternary
4
quaternary chalcogenide
4
chalcogenide cuznsns
4
cuznsns nanocrystals
4

Similar Publications

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.

View Article and Find Full Text PDF

Process-based quantitative description of carbon biogeochemical cycle in a reclaimed water intake area.

Environ Res

December 2024

State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.

Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.

View Article and Find Full Text PDF

The adverse effects of nanosilver on fish gills: A critical review on ecotoxicity and underlying mechanism.

Chemosphere

December 2024

Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China. Electronic address:

The environmental safety and health impacts of nanosilver have attracted much attention due to their continuous detection in water. Although the effects of nanosilver on aquatic organisms have been reported, the ecotoxicity and underlying mechanism of nanosilver in aquatic organisms are not fully understood. Fish gills are the primary target organs of pollutant exposure in aquatic environments, and is important to clarify the impact of nanosilver on aquatic organisms by systematically and comprehensively revealing the effect of nanosilver on fish gills.

View Article and Find Full Text PDF

Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film.

Int J Biol Macromol

December 2024

Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:

The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!