Brilliant blue FCF dye adsorption using magnetic activated carbon from Sapelli wood sawdust.

Environ Sci Pollut Res Int

Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.

Published: April 2023

Sapelli wood sawdust-derived magnetic activated carbon (SWSMAC) was produced by single-step pyrolysis using KOH and NiCl as activating and magnetization agents. SWSMAC was characterized by several techniques (SEM/EDS, N adsorption/desorption isotherms, FTIR, XRD, VSM, and pH) and applied in the brilliant blue FCF dye adsorption from an aqueous medium. The obtained SWSMAC was a mesoporous material and showed good textural properties. Metallic nanostructured Ni particles were observed. Also, SWSMAC exhibited ferromagnetic properties. In the adsorption experiments, adequate conditions were an adsorbent dosage of 0.75 g L and a solution pH of 4. The adsorption was fast, and the pseudo-second-order demonstrated greater suitability to the kinetic data. The Sips model fitted the equilibrium data well, and the maximum adsorption capacity predicted by this model was 105.88 mg g (at 55 °C). The thermodynamic study revealed that the adsorption was spontaneous, favorable, and endothermic. Besides, the mechanistic elucidation suggested that electrostatic interactions, hydrogen bonding, π-π interactions, and n-π interactions were involved in the brilliant blue FCF dye adsorption onto SWSMAC. In summary, an advanced adsorbent material was developed from waste by single-step pyrolysis, and this material effectively adsorbs brilliant blue FCF dye.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-26646-6DOI Listing

Publication Analysis

Top Keywords

brilliant blue
16
blue fcf
16
fcf dye
16
dye adsorption
12
magnetic activated
8
activated carbon
8
sapelli wood
8
single-step pyrolysis
8
adsorption
7
swsmac
5

Similar Publications

UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.

View Article and Find Full Text PDF

This study presents the development and characterization of manganese ferrite (MnFeO)-based nanocomposites with graphite oxide (GO) and chitosan (CS) for efficient dye removal from textile wastewater and aqueous solution. Comprehensive characterization was performed using FT-IR, Raman, XRD, BET, SEM, DRS and Zeta potential techniques. XRD analysis confirmed the cubic spinel structure of MnFeO, with characteristic peaks at 2θ = 32, 35, 48, 53, 62, and 64°.

View Article and Find Full Text PDF

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Expressing red fluorescent protein on the surface of using C-terminal domain of autotransporters.

Mol Biol Res Commun

January 2025

Labolatory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh city, Vietnam.

The Type V secretion system, or "autotransporter", is a secretion system that enables bacteria to directly export proteins from the cell interior to the extracellular membrane. mCherry is a second-generation monomeric red fluorescent protein that has an improvement in photostability compared to the first generation of RFP. In this research, we conducted the fusion of the mRFP into the C-terminal domain of EhaA - the translocation domain of the autotransporter protein transport system - to investigate the expression of mRFP on the surface of a model organism commonly utilized in recombinant protein research.

View Article and Find Full Text PDF

Potential and characteristics on nitrobenzene degradation by biological acidification.

J Environ Manage

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:

Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!