AI Article Synopsis

  • AI systems can assess surgeon skills through intraoperative surgery videos, but concerns exist about fairness and potential biases against certain surgeon sub-groups when making high-stakes decisions like credentialing.
  • The analyzed surgical AI systems (SAIS) show two types of bias: underskilling, which downgrades performance, and overskilling, which upgrades performance, both varying among different surgeon groups.
  • To address these biases, a strategy called TWIX was developed, helping AI provide explanations for assessments, effectively mitigating bias and improving performance across diverse hospital settings, ultimately aiding fair evaluation in global surgeon credentialing.

Article Abstract

Artificial intelligence (AI) systems can now reliably assess surgeon skills through videos of intraoperative surgical activity. With such systems informing future high-stakes decisions such as whether to credential surgeons and grant them the privilege to operate on patients, it is critical that they treat all surgeons fairly. However, it remains an open question whether surgical AI systems exhibit bias against surgeon sub-cohorts, and, if so, whether such bias can be mitigated. Here, we examine and mitigate the bias exhibited by a family of surgical AI systems-SAIS-deployed on videos of robotic surgeries from three geographically-diverse hospitals (USA and EU). We show that SAIS exhibits an underskilling bias, erroneously downgrading surgical performance, and an overskilling bias, erroneously upgrading surgical performance, at different rates across surgeon sub-cohorts. To mitigate such bias, we leverage a strategy -TWIX-which teaches an AI system to provide a visual explanation for its skill assessment that otherwise would have been provided by human experts. We show that whereas baseline strategies inconsistently mitigate algorithmic bias, TWIX can effectively mitigate the underskilling and overskilling bias while simultaneously improving the performance of these AI systems across hospitals. We discovered that these findings carry over to the training environment where we assess medical students' skills today. Our study is a critical prerequisite to the eventual implementation of AI-augmented global surgeon credentialing programs, ensuring that all surgeons are treated fairly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063676PMC
http://dx.doi.org/10.1038/s41746-023-00766-2DOI Listing

Publication Analysis

Top Keywords

mitigate bias
12
bias
9
surgeon skills
8
surgeon sub-cohorts
8
bias erroneously
8
surgical performance
8
overskilling bias
8
mitigate
5
surgeon
5
surgical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!