Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multitude of quadrotors cooperatively executing complicated tasks in predefined geometric configurations has attracted arising attention. Accurate and effective formation control laws are essential for completing missions. Finite- and fixed-time group formation control problems for multiple quadrotors are researched in this paper. The quadrotors are first divided into M distinct and non-overlapping subgroups. In each subgroup, quadrotors are driven to form the predefined configuration, with the whole achieving M-group formation meanwhile. Two distributed algorithms for multiple quadrotors system are then designed to realize finite- and fixed-time group formation. Detailed and theoretical analysis of finite- and fixed-time group formation formability is conducted. Sufficient conditions are provided by utilizing the Lyapunov stability and bi-limit homogeneity theory. Two simulations are carried out to verify the effectiveness of proposed algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2023.03.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!