A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records. | LitMetric

Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records.

Eur Heart J Qual Care Clin Outcomes

Research and Evaluation Department, Kaiser Permanente Southern California,100 S Los Robles Ave, 2nd Floor, Pasadena, CA 91101, USA.

Published: January 2024

Aims: This study aimed to develop and apply natural language processing (NLP) algorithms to identify recurrent atrial fibrillation (AF) episodes following rhythm control therapy initiation using electronic health records (EHRs).

Methods And Results: We included adults with new-onset AF who initiated rhythm control therapies (ablation, cardioversion, or antiarrhythmic medication) within two US integrated healthcare delivery systems. A code-based algorithm identified potential AF recurrence using diagnosis and procedure codes. An automated NLP algorithm was developed and validated to capture AF recurrence from electrocardiograms, cardiac monitor reports, and clinical notes. Compared with the reference standard cases confirmed by physicians' adjudication, the F-scores, sensitivity, and specificity were all above 0.90 for the NLP algorithms at both sites. We applied the NLP and code-based algorithms to patients with incident AF (n = 22 970) during the 12 months after initiating rhythm control therapy. Applying the NLP algorithms, the percentages of patients with AF recurrence for sites 1 and 2 were 60.7% and 69.9% (ablation), 64.5% and 73.7% (cardioversion), and 49.6% and 55.5% (antiarrhythmic medication), respectively. In comparison, the percentages of patients with code-identified AF recurrence for sites 1 and 2 were 20.2% and 23.7% for ablation, 25.6% and 28.4% for cardioversion, and 20.0% and 27.5% for antiarrhythmic medication, respectively.

Conclusion: When compared with a code-based approach alone, this study's high-performing automated NLP method identified significantly more patients with recurrent AF. The NLP algorithms could enable efficient evaluation of treatment effectiveness of AF therapies in large populations and help develop tailored interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785579PMC
http://dx.doi.org/10.1093/ehjqcco/qcad021DOI Listing

Publication Analysis

Top Keywords

nlp algorithms
16
rhythm control
12
antiarrhythmic medication
12
recurrent atrial
8
atrial fibrillation
8
natural language
8
language processing
8
electronic health
8
health records
8
control therapy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!