Formation of aggresomes with hydrogel-like characteristics by proteasome inhibition.

Biochim Biophys Acta Gene Regul Mech

Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cellular Degradation Biology Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Electronic address:

Published: June 2023

The spatiotemporal sequestration of misfolded proteins is a mechanism by which cells counterbalance proteome homeostasis upon exposure to various stress stimuli. Chronic inhibition of proteasomes results in a large, juxtanuclear, membrane-less inclusion, known as the aggresome. Although the molecular mechanisms driving its formation, clearance, and pathophysiological implications are continuously being uncovered, the biophysical aspects of aggresomes remain largely uncharacterized. Using fluorescence recovery after photobleaching and liquid droplet disruption assays, we found that the aggresomes are a homogeneously blended condensates with liquid-like properties similar to droplets formed via liquid-liquid phase separation. However, unlike fluidic liquid droplets, aggresomes have more viscosity and hydrogel-like characteristics. We also observed that the inhibition of aggresome formation using microtubule-disrupting agents resulted in less soluble and smaller cytoplasmic speckles, which was associated with marked cytotoxicity. Therefore, the aggresome appears to be cytoprotective and serves as a temporal reservoir for dysfunctional proteasomes and substrates that need to be degraded. Our results suggest that the aggresome assembles through distinct and potentially sequential processes of energy-dependent retrograde transportation and spontaneous condensation into a hydrogel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2023.194932DOI Listing

Publication Analysis

Top Keywords

hydrogel-like characteristics
8
formation aggresomes
4
aggresomes hydrogel-like
4
characteristics proteasome
4
proteasome inhibition
4
inhibition spatiotemporal
4
spatiotemporal sequestration
4
sequestration misfolded
4
misfolded proteins
4
proteins mechanism
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!