The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163069 | DOI Listing |
EXCLI J
November 2024
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
Farnesol (FAR) is a sesquiterpene alcohol that exists in many fruits and vegetables and possesses promising anti-inflammatory and antioxidant activities. Cadmium (Cd) is an environmental pollutant known for its serious health effects. Liver injury associated with oxidative stress is a hazardous consequence of exposure to Cd.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2024
Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA.
This study used 24 male rats to determine the protective effects of a new selenium molecule (glucose selenol) on cadmium (Cd) induced hepatic toxicity. The rats were randomly divided into four groups: control group, Cd group, Cd + 0.15 Se group, and Cd + 0.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China. Electronic address:
Accumulation of excessive molybdenum (Mo) and cadmium (Cd) in the environment poses detrimental effects on organisms. The precise mechanisms of hepatotoxicity that are involved with mitochondria, resulting from the co-exposure to Mo and Cd, remain poorly understood and elusive. To fill the gap, a total of 24 sheep were stratified into two groups: control group and Mo + Cd group (45 mg Mo·kg⁻¹·B.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
Exposure to heavy metals, particularly cadmium (Cd), poses significant health risks because of their toxic effects and potential for bioaccumulation in living organisms. This study examined the biochemical and metabolomic changes induced by Cd exposure in an animal model via advanced liquid chromatography with tandem mass spectrometry (LC-MS/MS) and biochemical assays to reveal significant disruptions in lipid and amino acid metabolism as well as alterations in key metabolic pathways. Cd exposure led to significant weight loss, hyperglycemia, and insulin resistance, indicating its role in metabolic disorders such as diabetes.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
Cadmium (Cd) exposure can induce follicular atresia and laying performance reduction in hens, which is linked to autophagy within the granulosa cells. Selenium (Se) can influence autophagy and counteract Cd toxicity. This study aimed to investigate the protective effect of Se on Cd-induced follicular atresia in laying hens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!