Background & Aims: Hepatopulmonary syndrome (HPS) is characterised by a defect in arterial oxygenation induced by pulmonary vascular dilatation in patients with liver disease. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, suppresses vasodilation by reducing nitric oxide (NO) production. We investigated the role of S1P in patients with HPS and the role of fingolimod as a therapeutic option in an experimental model of HPS.

Methods: Patients with cirrhosis with HPS (n = 44) and without HPS (n = 89) and 25 healthy controls were studied. Plasma levels of S1P, NO, and markers of systemic inflammation were studied. In a murine model of common bile duct ligation (CBDL), variations in pulmonary vasculature, arterial oxygenation, liver fibrosis, and inflammation were estimated before and after administration of S1P and fingolimod.

Results: Log of plasma S1P levels was significantly lower in patients with HPS than in those without HPS (3.1 ± 1.4 vs. 4.6 ± 0.2; p <0.001) and more so in severe intrapulmonary shunting than in mild and moderate intrapulmonary shunting (p <0.001). Plasma tumour necrosis factor-α (76.5 [30.3-91.6] vs. 52.9 [25.2-82.8]; p = 0.02) and NO (152.9 ± 41.2 vs. 79.2 ± 29.2; p = 0.001) levels were higher in patients with HPS than in those without HPS. An increase in Th17 (p <0.001) and T regulatory cells (p <0.001) was observed; the latter inversely correlated with plasma S1P levels. In the CBDL HPS model, fingolimod restored pulmonary vascular injury by increasing the arterial blood gas exchange and reducing systemic and pulmonary inflammation, resulting in improved survival (p = 0.02). Compared with vehicle treatment, fingolimod reduced portal pressure (p <0.05) and hepatic fibrosis and improved hepatocyte proliferation. It also induced apoptotic death in hepatic stellate cells and reduced collagen formation.

Conclusions: Plasma S1P levels are low in patients with HPS and even more so in severe cases. Fingolimod, by improving pulmonary vascular tone and oxygenation, improves survival in a murine CBDL HPS model.

Impact And Implications: A low level of plasma sphingosine-1-phosphate (S1P) is associated with severe pulmonary vascular shunting, and hence, it can serve as a marker of disease severity in patients with hepatopulmonary syndrome (HPS). Fingolimod, a functional agonist of S1P, reduces hepatic inflammation, improves vascular tone, and thus retards the progression of fibrosis in a preclinical animal model of HPS. Fingolimod is being proposed as a potential novel therapy for management of patients with HPS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2023.03.018DOI Listing

Publication Analysis

Top Keywords

hepatopulmonary syndrome
8
arterial oxygenation
8
patients hps
8
hps n =
8
hps
6
s1p
5
syndrome associated
4
associated low
4
low sphingosine-1-phosphate
4
sphingosine-1-phosphate levels
4

Similar Publications

When encountering severe hypoxemia that does not respond to oxygen supplementation, it is essential to consider underlying right-to-left shunting. Among various diagnostic approaches, the microbubble test via transthoracic echocardiography (TTE) is a simple, noninvasive method for detecting pulmonary arteriovenous shunts, particularly in hepatopulmonary syndrome (HPS). Although microbubbles are usually administered peripherally, using a Swan-Ganz (SG) catheter to inject microbubbles directly into the pulmonary artery may provide even more definitive diagnostic information.

View Article and Find Full Text PDF

New updates on hepatopulmonary syndrome: A comprehensive review.

Respir Med

December 2024

Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.

Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes arterial hypoxemia in the setting of liver disease. HPS has a progressive course and is associated with a two-fold increased risk of mortality relative to cirrhotic patients without HPS. It primarily affects patients with portal hypertension.

View Article and Find Full Text PDF
Article Synopsis
  • Liver transplantation is the main treatment for cirrhosis patients with hepatopulmonary syndrome (HPS), but its impact on survival rates is debated.
  • A study analyzed 181 liver transplant recipients, finding that 57.5% had HPS, with similar overall survival between HPS and non-HPS groups (around 69.8 vs 63.4 months).
  • Results showed that HPS patients experienced more post-surgery complications like delayed extubation and chest catheter insertion, but their overall survival was not negatively affected by HPS severity.
View Article and Find Full Text PDF

: The prevalence of portopulmonary hypertension (PoPH) is relatively low; however, its presence significantly worsens patients' prognosis. When diagnosed, PoPH can be effectively treated, and specific therapies can lead to a substantial reduction in pulmonary circulation pressure, facilitating the safe performance of liver transplantation. Echocardiography is recommended as a first-line method for the non-invasive diagnosis of pulmonary hypertension and serves as a valuable screening tool for patients being evaluated for liver transplantation (LT).

View Article and Find Full Text PDF

Background: Hepatopulmonary syndrome (HPS) is a complication in biliary atresia (BA) children following hepatoportoenterostomy. Liver transplantation (LT) was the definitive treatment of HPS. However, little was known about the risk factors between HPS and mortalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!