Age-related macular degeneration is an increasingly important public health issue due to ageing populations and increased longevity. Age-related macular degeneration affects individuals older than 55 years and threatens high-acuity central vision required for important tasks such as reading, driving, and recognising faces. Advances in retinal imaging have identified biomarkers of progression to late age-related macular degeneration. New treatments for neovascular age-related macular degeneration offer potentially longer-lasting effects, and progress is being made towards a treatment for atrophic late age-related macular degeneration. An effective intervention to slow progression in the earlier stages of disease, or to prevent late age-related macular degeneration development remains elusive, and our understanding of underlying mechanistic pathways continues to evolve.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0140-6736(22)02609-5 | DOI Listing |
Adv Sci (Weinh)
January 2025
Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.
Age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the global leading cause of irreversible blindness. Current first-line therapeutics, vascular endothelial growth factor (VEGF) antagonists, often yield incomplete and suboptimal vision improvement, necessitating the exploration of novel and efficacious therapeutic approaches. Herein, a supramolecular engineering strategy to construct moringin (MOR) loaded α-cyclodextrin (α-CD) coated nanoceria (M@CCNP) is constructed, where the hydroxy and newly formed carbonyl groups of α-CD interact with the nanoceria surface via O─Ce conjunction and the isothiocyanate group of MOR inserts deeply into the α-CD cavity via host-guest interaction.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
University of Bordeaux, INSERM U1219, BPH, Bordeaux, France.
Transl Vis Sci Technol
January 2025
Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
Purpose: Alteration of visual acuity in wet age-related macular degeneration (AMD) is mostly driven by vascular endothelial growth factor A (VEGF-A)-induced edema from leaky newly forming blood vessels below the retina layers. To date, all therapies aimed at alleviation of this process have relied on inhibition of VEGF-A activity. Although effective in preventing vascular leak and edema, this approach also leads to the loss of normal vasculature and multiple related side effects.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Healthcare (Basel)
January 2025
Division of Ophthalmology, Department of Surgery, UMass Chan-Lahey School of Medicine, Burlington, MA 01805, USA.
: Despite evidence that low vision rehabilitation (LVR) services can improve visual function in patients with neovascular age-related macular degeneration (nAMD), many patients are not directed to access these resources. This study was conducted to determine factors associated with LVR referral and to assess the visual outcomes from completed evaluations. : The study comprised a retrospective, cross-sectional analysis of patients with nAMD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!