Hexagonal boron nitride (hBN), sometimes referred to as white graphene, receives growing interest in the scientific community, especially when combined into van der Waals (vdW) homo- and heterostacks, in which novel and interesting phenomena may arise. hBN is also commonly used in combination with two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs). The realization of hBN-encapsulated TMDC homo- and heterostacks can indeed offer opportunities to investigate and compare TMDC excitonic properties in various stacking configurations. In this work, we investigate the optical response at the micrometric scale of mono- and homo-bilayer WSgrown by chemical vapor deposition and encapsulated between two single layers of hBN. Imaging spectroscopic ellipsometry is exploited to extract the local dielectric functions across one single WSflake and detect the evolution of excitonic spectral features from monolayer to bilayer regions. Exciton energies undergo a redshift by passing from hBN-encapsulated single layer to homo-bilayer WS, as also confirmed by photoluminescence spectra. Our results can provide a reference for the study of the dielectric properties of more complex systems where hBN is combined with other 2D vdW materials into heterostructures and are stimulating towards the investigation of the optical response of other technologically-relevant heterostacks.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/acc918DOI Listing

Publication Analysis

Top Keywords

local dielectric
8
chemical vapor
8
vapor deposition
8
homo- heterostacks
8
optical response
8
dielectric function
4
function hbn-encapsulated
4
hbn-encapsulated wsflakes
4
wsflakes grown
4
grown chemical
4

Similar Publications

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Global-optimized energy storage performance in multilayer ferroelectric ceramic capacitors.

Nat Commun

January 2025

Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.

View Article and Find Full Text PDF

Electrostriction is the upsurge of strain under an electric field in any dielectric material. Oxygen-defective metal oxides, such as acceptor-doped ceria, exhibit high electrostriction 10 mV values, which can be further enhanced via interface engineering at the nanoscale. This effect in ceria is "non-classical" as it arises from an intricate relation between defect-induced polarisation and local elastic distortion in the lattice.

View Article and Find Full Text PDF

Structural and electronic features enabling delocalized charge-carriers in CuSbSe.

Nat Commun

January 2025

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.

Inorganic semiconductors based on heavy pnictogen cations (Sb and Bi) have gained significant attention as potential nontoxic and stable alternatives to lead-halide perovskites for solar cell applications. A limitation of these novel materials, which is being increasingly commonly found, is carrier localization, which substantially reduces mobilities and diffusion lengths. Herein, CuSbSe is investigated and discovered to have delocalized free carriers, as shown through optical pump terahertz probe spectroscopy and temperature-dependent mobility measurements.

View Article and Find Full Text PDF

A systematic study of the impact of film thickness on the properties of thin Bi films is presented. To this end, epitaxial films of high quality have been grown on a Si (111) substrate with thicknesses ranging from 1.9 to 29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!