Purpose: Relapsed or refractory extranodal natural killer/T-cell lymphoma (R/R ENKTL) is a rare and aggressive type of non-Hodgkin lymphoma with limited treatment options. This phase II study evaluated the efficacy and safety of sugemalimab, an anti-PD-L1 monoclonal antibody, in R/R ENKTL.

Methods: Eligible patients received sugemalimab 1,200 mg intravenously once every 3 weeks for up to 24 months or until progression, death, or study withdrawal. The primary end point was objective response rate (ORR) assessed by an independent radiologic review committee. Key secondary end points included ORR assessed by the investigators, complete response rate, duration of response, and safety.

Results: At the data cutoff (February 23, 2022), 80 patients were enrolled and followed for a median of 18.7 months. At baseline, 54 (67.5%) had stage IV disease and 39 (48.8%) had received ≥2 lines of prior systemic therapy. Independent radiologic review committee-assessed ORR was 44.9% (95% CI, 33.6 to 56.6); 28 (35.9%) patients achieved a complete response and seven (9.0%) achieved a partial response, with a 12-month duration of response rate of 82.5% (95% CI, 62.0 to 92.6). Investigator-assessed ORR was 45.6% (95% CI, 34.3 to 57.2), and 24 (30.4%) patients achieved a complete response. Most treatment-emergent adverse events were grade 1-2 in severity, and grade ≥ 3 events were reported in 32 (40.0%) patients.

Conclusion: Sugemalimab showed robust and durable antitumor activity in R/R ENKTL. Treatment was well tolerated with expected safety profile for this drug class.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414714PMC
http://dx.doi.org/10.1200/JCO.22.02367DOI Listing

Publication Analysis

Top Keywords

response rate
12
complete response
12
relapsed refractory
8
refractory extranodal
8
extranodal natural
8
natural killer/t-cell
8
killer/t-cell lymphoma
8
phase study
8
r/r enktl
8
orr assessed
8

Similar Publications

This study investigates the ablation performance of Inconel 718, a nickel-based superalloy, and metal matrix polycrystalline diamond (MMPCD), a super composite, using a nano-second (ns) pulsed laser across a range of ablation conditions. Single trenches varying in energy fluence and scanning speeds were created, analyzing the experimental responses in terms of ablation rate and surface roughness. Using regression techniques, models were developed to understand these relationships.

View Article and Find Full Text PDF

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

The mechanical responses of sandy soil under dynamic loading is closely related to protective engineering and geotechnical engineering, is still not fully understood. To investigate the energy attenuation law and propagation velocity of compressed waves in dry sandy soil, this paper focuses on the dynamic response of compression waves in the specimen under single impact and repetitive impact conditions using an improved split Hopkinson pressure bar (SHPB). The results reveal that the length of the specimen follows an exponential relationship with the attenuation of the peak stress.

View Article and Find Full Text PDF

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!