Skeletal muscle satellite cells (SCs) are adult stem cells responsible for muscle development and injury-induced muscle regeneration. Functional elucidation of intrinsic regulatory factors governing SC activity is constrained partially by the technological limitations in editing SCs in vivo. Although the power of CRISPR/Cas9 in genome manipulation has been widely documented, its application in endogenous SCs remains largely untested. Our recent study generates a muscle-specific genome editing system leveraging the Cre-dependent Cas9 knockin mice and AAV9-mediated sgRNAs delivery, which allows gene disruption in SCs in vivo. Here, we illustrate the step-by-step procedure for achieving efficient editing using the above system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3036-5_21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!