Aims/hypothesis: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons.
Methods: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice.
Results: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons.
Conclusions/interpretation: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244297 | PMC |
http://dx.doi.org/10.1007/s00125-023-05905-8 | DOI Listing |
Genes (Basel)
December 2024
Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland.
-spectrum disorders are caused by a mutation in the gene. The term includes a wide range of rare disorders, from the most severe Wolfram syndrome with autosomal recessive inheritance to milder clinical manifestations with a single causative variant in the gene, such as Wolfram-like syndrome, low-frequency sensorineural hearing loss (LFSNHL), isolated diabetes mellitus (DM), nonsyndromic optic atrophy (OA), and isolated congenital cataracts. The aim of this study was to evaluate genotype-phenotype correlations in Polish patients with -spectrum disorders.
View Article and Find Full Text PDFCochlear Implants Int
December 2024
Department of ENT and Head & Neck Surgery, Seth GS Medical College & K.E.M. Hospital, Mumbai, India.
Introduction: Wolfram syndrome, a rare autosomal recessive disorder, is characterised by diabetes insipidus, juvenile diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD).
Case Report: We present a case of a 21-year-old male diagnosed with Wolfram syndrome who underwent cochlear implantation due to progressive hearing loss. The patient first complained of bilateral hearing loss at the age of 8 years.
J Med Genet
December 2024
Functional Unity of Ophthalmology, ERN Eye, Ophthalmological Rare Diseases Center, Georges Pompidou European Hospital, Paris, France
Proc Natl Acad Sci U S A
August 2024
Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110.
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident secretory protein that reduces inflammation and promotes proliferation in pancreatic β cells. Numerous studies have highlighted the potential of MANF as a therapeutic agent for diabetes mellitus (DM), making it essential to understand the mechanisms underlying MANF's functions. In our previous search for a molecule that mediates MANF signaling, we identified Neuroplastin (NPTN) as a binding partner of MANF that localizes on the cell surface.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia. Electronic address:
Wolfram syndrome (WS) is a rare condition caused by homozygous or compound heterozygous mutations in the WFS1 gene primarily. It is diagnosed on the basis of early-onset diabetes mellitus and optic nerve atrophy. Patients complain of trigeminal-like migraines and show deficits in vibration sensation, but the underlying cause is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!