Electronic transport and hysteresis in metal halide perovskites (MHPs) are key to the applications in photovoltaics, light emitting devices, and light and chemical sensors. These phenomena are strongly affected by the materials microstructure including grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we demonstrate an active machine learning framework for "driving" an automated scanning probe microscope (SPM) to discover the microstructures responsible for specific aspects of transport behavior in MHPs. In our setup, the microscope can discover the microstructural elements that maximize the onset of conduction, hysteresis, or any other characteristic that can be derived from a set of current-voltage spectra. This approach opens new opportunities for exploring the origins of materials functionality in complex materials by SPM and can be integrated with other characterization techniques either before (prior knowledge) or after (identification of locations of interest for detail studies) functional probing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00223 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!