Neurovascular coupling (NVC) modulates cerebral blood flow to match increased metabolic demand during neuronal excitation. Activation of inhibitory interneurons also increase blood flow, but the basis for NVC caused by interneurons is unclear. While astrocyte Ca levels rise with excitatory neural transmission, much less is known with regards to astrocytic sensitivity to inhibitory neurotransmission. We performed two-photon microscopy in awake mice to examine the correlation between astrocytic Ca and NVC, evoked by activation of either all (VGAT ) or only parvalbumin-positive GABAergic interneurons (PV ). Optogenetic stimulation of VGAT and PV in the somatosensory cortex triggered astrocytic Ca increases that were abolished by anesthesia. In awake mice, PV evoked astrocytic Ca responses with a short latency that preceded NVC, whereas VGAT evoked Ca increases that were delayed relative to the NVC response. The early onset of PV evoked astrocytic Ca increases depended on noradrenaline release from locus coeruleus as did the subsequent NVC response. Though the relationship between interneuron activity and astrocytic Ca responses is complex, we suggest that the rapid astrocyte Ca responses to increased PV activity shaped the NVC. Our results underline that interneuron and astrocyte-dependent mechanisms should be studied in awake mice.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.24370DOI Listing

Publication Analysis

Top Keywords

awake mice
16
astrocytic responses
12
neurovascular coupling
8
blood flow
8
astrocytic increases
8
evoked astrocytic
8
nvc response
8
astrocytic
7
nvc
7
interneurons
4

Similar Publications

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

The effects of diazepam on sleep depend on the photoperiod.

Acta Pharmacol Sin

January 2025

Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University, Medical Centre, Leiden, 2333, ZC, The Netherlands.

Daylength (i.e., photoperiod) provides essential information for seasonal adaptations of organisms.

View Article and Find Full Text PDF

Background: Spatial disorientation is an early symptom of Alzheimer's disease (AD). The hippocampus creates a cognitive map, wherein cells form firing fields in specific locations within an environment, termed place cells. Critically, place cells remain stable across visits to an environment, but change their firing rate or field location in a different environment.

View Article and Find Full Text PDF

Background: Abnormal neuronal activity was observed in awake and behaving tauopathy mice using two-photon calcium imaging. Our previous study has revealed the relationship between tau pathology and altered neuronal calcium dynamics within the motor cortex of JNPL3 tauopathy mice at different stages of disease progression, specifically at 6 and 12 months of age (Wu Q et al, Neurobiol. Dis.

View Article and Find Full Text PDF

Noradrenergic inputs from the locus coeruleus to anterior piriform cortex and the olfactory bulb modulate olfactory outputs.

Nat Commun

January 2025

Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Norepinephrine (NE) released from locus coeruleus (LC) noradrenergic (NAergic) neurons plays a pivotal role in the regulation of olfactory behaviors. However, the precise circuits and receptor mechanisms underlying this function are not well understood. Here, in DBH-Cre mice model, we show that LC NAergic neurons project directly to both anterior piriform cortex (aPC) and the olfactory bulb (OB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!