Many groups have reported lymphatic and glymphatic structures in animal and human brains, but tracer injection into the human brain to demonstrate real-time lymphatic drainage and mapping has not been described. We enrolled patients undergoing standard-of-care resection or stereotactic biopsy for suspected intracranial tumors. Patients received peritumoral injections of Tc-tilmanocept followed by planar or tomographic imaging. Fourteen patients with suspected brain tumors were enrolled. One was excluded from analysis because of tracer leakage during injection. There was no drainage of Tc-tilmanocept to regional lymph nodes in any of the patients. On average, after correcting for radioactive decay, 70.7% (95% CI: 59.9%, 81.6%) of the tracer in the injection site and 78.1% (95% CI: 71.1%, 85.1%) in the whole-head on the day of surgery remained the morning after, with variable radioactivity in the subarachnoid space. The retained fraction was much greater than expected based on the clearance rate from non-brain injection sites. In this pilot study, the lymphatic tracer Tc-tilmanocept was injected into the brain parenchyma, and there was no drainage outside the brain to the cervical lymph nodes. Our work demonstrates an inefficiency of drainage from peritumoral brain parenchyma and highlights a therapeutic opportunity to improve immunosurveillance of the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369147PMC
http://dx.doi.org/10.1177/0271678X231160891DOI Listing

Publication Analysis

Top Keywords

tracer injection
12
pilot study
8
injection human
8
human brain
8
lymph nodes
8
brain parenchyma
8
brain
7
tracer
5
injection
5
study lymphoscintigraphy
4

Similar Publications

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Optimizing Low-Dose [18F]FDG-PET/CT Scans: Ensuring Quality Amid Radiotracer Availability Challenges - Insights from a Peripheral Tertiary Care Center.

Indian J Nucl Med

November 2024

Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.

Background: The introduction of positron emission tomography/computed tomography (PET/CT) has significantly advanced medical imaging. In oncology, F-fluorodeoxyglucose (F-FDG) PET/CT is particularly crucial for staging, evaluating treatment response, monitoring follow-up, and planning radiotherapy. However, in resource limiting hospitals, the availability of fluorine-labeled F-FDG limits optimal scan acquisition.

View Article and Find Full Text PDF

Introduction: Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task.

View Article and Find Full Text PDF

Background: Intrathecally (IT) delivered antisense oligonucleotides (ASOs) are promising therapies that can reduce tau pathology in Alzheimer’s Disease (AD). However, current plasma and CSF sampling methods to estimate brain tissue exposure of ASOs are inherently limited, hampering ASO clinical developmental plans. We developed the PET tracer [F]BIO‐687, which binds ASO conjugates (ASO‐Tz) in vivo, allowing us to image ASO distribution in a living brain using “pretargeted” imaging.

View Article and Find Full Text PDF

Background: Differences between on‐ and off‐target retention characteristics between [F]MK6240 and [F]Flortaucipir (FTP) complicate the harmonization across tracers. Our objective here was to separate the impact of the reference region by evaluating correlations between [F]MK6240 (MK) and [F]FTP standard uptake values (SUVs).

Method: Participants (Figure 1, n=90) received an amyloid‐β (Aβ) PET scan ([C]PIB or [F]NAV4694) and two tau‐PET scans: [F]MK (90‐110 minutes post‐injection) and [F]FTP (80‐100 minutes post‐injection).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!