Dose reduction and image enhancement in micro-CT using deep learning.

Med Phys

Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium.

Published: September 2023

Background: In preclinical settings, micro-computed tomography (CT) provides a powerful tool to acquire high resolution anatomical images of rodents and offers the advantage to in vivo non-invasively assess disease progression and therapy efficacy. Much higher resolutions are needed to achieve scale-equivalent discriminatory capabilities in rodents as those in humans. High resolution imaging however comes at the expense of increased scan times and higher doses. Specifically, with preclinical longitudinal imaging, there are concerns that dose accumulation may affect experimental outcomes of animal models.

Purpose: Dose reduction efforts under the ALARA (as low as reasonably achievable) principles are thus a key point of attention. However, low dose CT acquisitions inherently induce higher noise levels which deteriorate image quality and negatively impact diagnostic performance. Many denoising techniques already exist, and deep learning (DL) has become increasingly popular for image denoising, but research has mostly focused on clinical CT with limited studies conducted on preclinical CT imaging. We investigate the potential of convolutional neural networks (CNN) for restoring high quality micro-CT images from low dose (noisy) images. The novelty of the CNN denoising frameworks presented in this work consists of utilizing image pairs with realistic CT noise present in the input as well as the target image used for the model training; a noisier image acquired with a low dose protocol is matched to a less noisy image acquired with a higher dose scan of the same mouse.

Methods: Low and high dose ex vivo micro-CT scans of 38 mice were acquired. Two CNN models, based on a 2D and 3D four-layer U-Net, were trained with mean absolute error (30 training, 4 validation and 4 test sets). To assess denoising performance, ex vivo mice and phantom data were used. Both CNN approaches were compared to existing methods, like spatial filtering (Gaussian, Median, Wiener) and iterative total variation image reconstruction algorithm. Image quality metrics were derived from the phantom images. A first observer study (n = 23) was set-up to rank overall quality of differently denoised images. A second observer study (n = 18) estimated the dose reduction factor of the investigated 2D CNN method.

Results: Visual and quantitative results show that both CNN algorithms exhibit superior performance in terms of noise suppression, structural preservation and contrast enhancement over comparator methods. The quality scoring by 23 medical imaging experts also indicates that the investigated 2D CNN approach is consistently evaluated as the best performing denoising method. Results from the second observer study and quantitative measurements suggest that CNN-based denoising could offer a 2-4× dose reduction, with an estimated dose reduction factor of about 3.2 for the considered 2D network.

Conclusions: Our results demonstrate the potential of DL in micro-CT for higher quality imaging at low dose acquisition settings. In the context of preclinical research, this offers promising future prospects for managing the cumulative severity effects of radiation in longitudinal studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16385DOI Listing

Publication Analysis

Top Keywords

dose reduction
20
low dose
16
dose
12
observer study
12
image
8
deep learning
8
high resolution
8
image quality
8
image acquired
8
second observer
8

Similar Publications

Objectives: To compare two strategies-a hydrocortisone replacement strategy and a prednisone tapering strategy-for their success in glucocorticoid discontinuation in patients with rheumatoid arthritis (RA) with low disease activity (LDA).

Methods: The Strategies for glucocorticoid TApering in Rheumatoid arthritis (STAR) study was a double- blind, double-placebo randomised controlled trial including patients with RA receiving a stable dose of glucocorticoid 5 mg/day for ≥3 months and were in LDA for ≥3 months. Patients were randomly assigned in a 1:1 ratio to either replace prednisone with 20 mg/day of hydrocortisone for 3 months, then reduce to 10 mg/day for 3 months before discontinuation or to taper prednisone by 1 mg/day every month until complete discontinuation, contingent on maintaining LDA.

View Article and Find Full Text PDF

This study was undertaken to assess the antioxidant and neuropharmacological potentials of the methanol leaf extract of Acanthus ebracteatus (MAEL) through experimental and in silico methods. The phytochemical screening (PS) and GC-MS (gas chromatography-mass spectrometry) identified 28 phytochemicals with different classes in nature in MAEL. The MAEL revealed better antioxidant activity through various in vitro antioxidant assays.

View Article and Find Full Text PDF

Background: Acute Lymphoblastic Leukemia (ALL) is the most common type of leukemia among children. There are several types of drugs that are common in treating and controlling leukemia, including 6-M. Moreover, the anti-cancer effects of the Thiosemicarbazone-Ni complex were surveyed as well as 6-MP.

View Article and Find Full Text PDF

Photon mini-GRID therapy for preoperative breast cancer tumor treatment: A treatment plan study.

Med Phys

January 2025

Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.

Background: Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming.

View Article and Find Full Text PDF

Tofacitinib Treatment for Active Dermatomyositis and Anti-synthetase Syndrome: A Prospective Cohort Pilot Study.

Rheumatology (Oxford)

January 2025

Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.

Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).

Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!