AI Article Synopsis

Article Abstract

Crystallization kinetic controls the crystallographic orientation, inducing anisotropic properties of the materials. As a result, preferential orientation with advanced optoelectronic properties can enhance the photovoltaic devices' performance. Although incorporation of additives is one of the most studied methods to stabilize the photoactive α-phase of formamidinium lead tri-iodide (α-FAPbI ), no studies focus on how the additives affect the crystallization kinetics. Along with the role of methylammonium chloride (MACl) as a "stabilizer" in the formation of α-FAPbI , herein, the additional role as a "controller" in the crystallization kinetics is pointed out. With microscopic observations, for example, electron backscatter diffraction and selected area electron diffraction, it is examined that higher concentration of MACl induces slower crystallization kinetics, resulting in larger grain size and [100] preferred orientation. Optoelectronic properties of [100] preferentially oriented grains with less non-radiative recombination, a longer lifetime of charge carriers, and lower photocurrent deviations in between each grain induce higher short-circuit current density (J ) and fill factor. Resulting MACl40 mol% attains the highest power conversion efficiency (PCE) of 24.1%. The results provide observations of a direct correlation between the crystallographic orientation and device performance as it highlights the importance of crystallization kinetics resulting in desirable microstructures for device engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190499PMC
http://dx.doi.org/10.1002/advs.202300798DOI Listing

Publication Analysis

Top Keywords

crystallization kinetics
16
crystallographic orientation
12
optoelectronic properties
8
orientation
5
crystallization
5
kinetic-controlled crystallization
4
crystallization α-fapbi
4
α-fapbi inducing
4
inducing preferred
4
preferred crystallographic
4

Similar Publications

A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.

View Article and Find Full Text PDF

Enhancing Syagrus romanzoffiana lignocellulosic fibers' properties by ecological treatment with sodium bicarbonate for applications in sustainable lightweight biocomposites.

Int J Biol Macromol

January 2025

Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria.

Investigating the fascinating world of natural fibers, where Syagrus romanzoffiana fibers (SrFs) are promising substitutes for glass and synthetic fibers in composite materials, is more than interesting. The improvement of SrFs through an environmentally friendly treatment employing sodium bicarbonate (NaHCO₃) at different concentrations (5 %, 10 %, 20 %, and 30 % by weight) over various durations (24, 72, and 168 h) is the subject of this study. The objective is to provide a sustainable and economical approach to enhancing fiber characteristics.

View Article and Find Full Text PDF

Structural and electrochemical investigation of P2-NaFeMnO high-performance sodium ion cathode materials.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:

Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.

View Article and Find Full Text PDF

Carving Metal-Organic-Framework Glass Based Solid-State Electrolyte Via a Top-Down Strategy for Lithium-Metal Battery.

Angew Chem Int Ed Engl

January 2025

KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

Morphology control of electrically conductive metal-organic frameworks (EC-MOFs) can be a powerful means to tune their surface area and carrier transport pathways, particularly beneficial for energy conversion and storage. However, controlling EC-MOFs' morphology is underexplored due to the uncontrollable crystal nucleation and rapid growth kinetics. This work introduces a microwave-assisted strategy to readily synthesize Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with controlled morphologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!