Global patterns and climatic determinants of phylogenetic structure of regional fern floras.

New Phytol

Center for Global Change and Complex Ecosystems, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.

Published: July 2023

Knowledge of relationships between phylogenetic structure of a biological assemblage and ecological factors that drive the variation of phylogenetic structure among regions is crucial for understanding the causes of variation in taxonomic composition and richness among regions, but this knowledge is lacking for the global flora of ferns. Here, we fill this critical knowledge gap. We divided the globe into 392 geographic units on land, collated species lists of ferns for each geographic unit, and used different phylogenetic metrics (tip- vs basal-weighted) reflecting different evolutionary depths to quantify phylogenetic structure. We then related taxonomic and phylogenetic structure metrics to six climatic variables for ferns as a whole and for two groups of ferns (old clades vs polypods) reflecting different evolutionary histories across the globe and within each continental region. We found that when old clades and polypods were considered separately, temperature-related variables explained more variation in these metrics than did precipitation-related variables in both groups. When analyses were conducted for continental regions separately, this pattern holds in most cases. Climate extremes have a stronger relationship with phylogenetic structure of ferns than does climate seasonality. Climatic variables explained more variation in phylogenetic structure at deeper evolutionary depths.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18920DOI Listing

Publication Analysis

Top Keywords

phylogenetic structure
28
phylogenetic
8
variation phylogenetic
8
reflecting evolutionary
8
evolutionary depths
8
climatic variables
8
clades polypods
8
variables explained
8
explained variation
8
structure
7

Similar Publications

The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.

View Article and Find Full Text PDF

Sponges harbour complex microbiomes and as ancient metazoans and important ecosystem players are emerging as powerful models to understand the evolution and ecology of symbiotic interactions. Metagenomic studies have previously described the functional features of sponge symbionts, however, little is known about the metabolic interactions and processes that occur under different environmental conditions. To address this issue, we construct here constraint-based, genome-scale metabolic networks for the microbiome of the sponge Stylissa sp.

View Article and Find Full Text PDF

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.

Nat Commun

December 2024

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

Multicopy subtelomeric genes underlie animal infectivity of divergent Cryptosporidium hominis subtypes.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.

The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!