Aromatic compounds are a class of organic compounds with benzene ring(s). Aromatic compounds are hardly decomposed due to its stable structure and can be accumulated in the food cycle, posing a great threat to the ecological environment and human health. Bacteria have a strong catabolic ability to degrade various refractory organic contaminants (e.g., polycyclic aromatic hydrocarbons, PAHs). The adsorption and transportation are prerequisites for the catabolism of aromatic compounds by bacteria. While remarkable progress has been made in understanding the metabolism of aromatic compounds in bacterial degraders, the systems responsible for the uptake and transport of aromatic compounds are poorly understood. Here we summarize the effect of cell-surface hydrophobicity, biofilm formation, and bacterial chemotaxis on the bacterial adsorption of aromatic compounds. Besides, the effects of outer membrane transport systems (such as FadL family, TonB-dependent receptors, and OmpW family), and inner membrane transport systems (such as major facilitator superfamily (MFS) transporter and ATP-binding cassette (ABC) transporter) involved in the membrane transport of these compounds are summarized. Moreover, the mechanism of transmembrane transport is also discussed. This review may serve as a reference for the prevention and remediation of aromatic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.220486 | DOI Listing |
Protoplasma
January 2025
Botany Unit (SAIF & R), CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
Eclipta prostrata belongs to the Asteraceae family. The plant contains bioactive compounds like wedelolactone (WDL) and demethylwedelolactone (DW). Its transcriptomic information engaged with secondary metabolite biosynthesis is not available.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Spanish National Research Council (CSIC), Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Jose Antonio Nováis 6 28040, Madrid, Spain.
β-Carbolines (βCs) are bioactive compounds present in foods and biological systems. This work describes the identification, occurrence, and mechanism of formation of 1-acetyl-β-carbolines (1-acetyl-βCs) that result from the reaction of l-tryptophan with the α-dicarbonyl compound methylglyoxal. Two β-carbolines are characterized as 1-acetyl-β-carboline (AβC) and 1-acetyl-β-carboline-3-carboxylic acid (AβC-COOH).
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Plant Sciences, School of Life Sciences, University of Hyderabad Hyderabad India.
Isatin (1-indole-2,3-dione) and its derivatives have been found to exhibit various biological activities, including anticancer and antidiabetic properties. In this study, a series of nine isatin-1,2,3-triazole conjugates were synthesized and evaluated for their anti-inflammatory potential experiments. Their synthesis involved the propargylation of isatin 1 with propargyl bromide to obtain -propargyl isatin 2, which was subjected to click reactions with different aromatic azides to yield isatin--1,2,3-triazoles (3a-i).
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!