AI Article Synopsis

  • Epithelial cells undergo a process called epithelial-mesenchymal transition (EMT) during cancer progression, but how they maintain their epithelial characteristics is unclear.
  • The long noncoding RNA LITATS1 acts as a protective factor in normal epithelial cells, inhibiting EMT in breast and lung cancers and reducing its expression is linked to worse patient outcomes.
  • LITATS1 enhances the degradation of the TGF-β type I receptor, dampening TGF-β/SMAD signaling, and its depletion increases cancer cell mobility and EMT, highlighting its role in preserving epithelial integrity.

Article Abstract

Epithelial cells acquire mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) during cancer progression. However, how epithelial cells retain their epithelial traits and prevent malignant transformation is not well understood. Here, we report that the long noncoding RNA LITATS1 (LINC01137, ZC3H12A-DT) is an epithelial gatekeeper in normal epithelial cells and inhibits EMT in breast and non-small cell lung cancer cells. Transcriptome analysis identified LITATS1 as a TGF-β target gene. LITATS1 expression is reduced in lung adenocarcinoma tissues compared with adjacent normal tissues and correlates with a favorable prognosis in breast and non-small cell lung cancer patients. LITATS1 depletion promotes TGF-β-induced EMT, migration, and extravasation in cancer cells. Unbiased pathway analysis demonstrated that LITATS1 knockdown potently and selectively potentiates TGF-β/SMAD signaling. Mechanistically, LITATS1 enhances the polyubiquitination and proteasomal degradation of TGF-β type I receptor (TβRI). LITATS1 interacts with TβRI and the E3 ligase SMURF2, promoting the cytoplasmic retention of SMURF2. Our findings highlight a protective function of LITATS1 in epithelial integrity maintenance through the attenuation of TGF-β/SMAD signaling and EMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183827PMC
http://dx.doi.org/10.15252/embj.2022112806DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
tgf-β-induced emt
8
emt cancer
8
litats1
8
breast non-small
8
non-small cell
8
cell lung
8
lung cancer
8
cancer cells
8
tgf-β/smad signaling
8

Similar Publications

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.

View Article and Find Full Text PDF

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!