Deep learning methods have recently become the state-of-the-art in a variety of regulatory genomic tasks including the prediction of gene expression from genomic DNA. As such, these methods promise to serve as important tools in interpreting the full spectrum of genetic variation observed in personal genomes. Previous evaluation strategies have assessed their predictions of gene expression across genomic regions, however, systematic benchmarking is lacking to assess their predictions across individuals, which would directly evaluates their utility as personal DNA interpreters. We used paired Whole Genome Sequencing and gene expression from 839 individuals in the ROSMAP study to evaluate the ability of current methods to predict gene expression variation across individuals at varied loci. Our approach identifies a limitation of current methods to correctly predict the direction of variant effects. We show that this limitation stems from insufficiently learnt sequence motif grammar, and suggest new model training strategies to improve performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055057 | PMC |
http://dx.doi.org/10.1101/2023.03.16.532969 | DOI Listing |
J Reprod Immunol
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
To further evaluate the effects of lymphocyte immunotherapy (LIT) for the treatment of RPL patients this study aimed to utilize this type of treatment in RPL patients with positive antinuclear antibodies (ANA) in comparison to ANA-negative RPL women. To this aim, 84 ANA-positive, 114 ANA negative, and 50 healthy pregnant women were recruited. To examine the frequency of cells before and after LIT, flowcytometry technique was employed.
View Article and Find Full Text PDFSci Adv
January 2025
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFSci Transl Med
January 2025
Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
Long-term, immunosuppression-free allograft survival has been induced in human and nonhuman primate (NHP) kidney recipients after nonmyeloablative conditioning and donor bone marrow transplantation (DBMT), resulting in transient mixed hematopoietic chimerism. However, the same strategy has consistently failed in NHP heart transplant recipients. Here, we investigated whether long-term heart allograft survival could be achieved by cotransplanting kidneys from the same donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!