Insertion sequences (IS) are compact and pervasive transposable elements found in bacteria, which encode only the genes necessary for their mobilization and maintenance. IS /IS elements undergo 'peel-and-paste' transposition catalyzed by a TnpA transposase, but intriguingly, they also encode diverse, TnpB- and IscB-family proteins that are evolutionarily related to the CRISPR-associated effectors Cas12 and Cas9, respectively. Recent studies demonstrated that TnpB-family enzymes function as RNA-guided DNA endonucleases, but the broader biological role of this activity has remained enigmatic. Here we show that TnpB/IscB are essential to prevent permanent transposon loss as a consequence of the TnpA transposition mechanism. We selected a family of related IS elements from that encode diverse TnpB/IscB orthologs, and showed that a single TnpA transposase was active for transposon excision. The donor joints formed upon religation of IS-flanking sequences were efficiently targeted for cleavage by RNA-guided TnpB/IscB nucleases, and co-expression of TnpB together with TnpA led to significantly greater transposon retention, relative to conditions in which TnpA was expressed alone. Remarkably, TnpA and TnpB/IscB recognize the same AT-rich transposon-adjacent motif (TAM) during transposon excision and RNA-guided DNA cleavage, respectively, revealing a striking convergence in the evolution of DNA sequence specificity between collaborating transposase and nuclease proteins. Collectively, our study reveals that RNA-guided DNA cleavage is a primal biochemical activity that arose to bias the selfish inheritance and spread of transposable elements, which was later co-opted during the evolution of CRISPR-Cas adaptive immunity for antiviral defense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055086 | PMC |
http://dx.doi.org/10.1101/2023.03.14.532601 | DOI Listing |
Nat Commun
January 2025
Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, 78712, USA.
Type II CRISPR endonucleases are widely used programmable genome editing tools. Recently, CRISPR-Cas systems with highly compact nucleases have been discovered, including Cas9d (a type II-D nuclease). Here, we report the cryo-EM structures of a Cas9d nuclease (747 amino acids in length) in multiple functional states, revealing a stepwise process of DNA targeting involving a conformational switch in a REC2 domain insertion.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.
View Article and Find Full Text PDFBMC Biol
December 2024
Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!