Molluscs are one of the most morphologically diverse clades of metazoans, exhibiting an immense diversification of calcium carbonate structures, such as the shell. Biomineralization of the calcified shell is dependent on shell matrix proteins (SMPs). While SMP diversity is hypothesized to drive molluscan shell diversity, we are just starting to unravel SMP evolutionary history and biology. Here we leveraged two complementary model mollusc systems, and , to determine the lineage-specificity of 185 SMPs. We found that 95% of the adult shell proteome belongs to conserved metazoan and molluscan orthogroups, with molluscan-restricted orthogroups containing half of all SMPs in the shell proteome. The low number of -restricted SMPs contradicts the generally-held notion that an animal’s biomineralization toolkit is dominated by mostly novel genes. Next, we selected a subset of lineage-restricted SMPs for spatial-temporal analysis using hybridization chain reaction (HCR) during larval stages in . We found that 12 out of 18 SMPs analyzed are expressed in the shell field. Notably, these genes are present in 5 expression patterns, which define at least three distinct cell populations within the shell field. These results represent the most comprehensive analysis of gastropod SMP evolutionary age and shell field expression patterns to date. Collectively, these data lay the foundation for future work to interrogate the molecular mechanisms and cell fate decisions underlying molluscan mantle specification and diversification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055211PMC
http://dx.doi.org/10.1101/2023.03.18.532128DOI Listing

Publication Analysis

Top Keywords

shell field
16
shell
11
shell matrix
8
matrix proteins
8
distinct cell
8
cell populations
8
smp evolutionary
8
shell proteome
8
expression patterns
8
smps
6

Similar Publications

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO2 and (Au) Au@SiO2 nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (Au25GSH NCs).

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

Small-section steel-shell concrete immersed tube tunnels are intended for minibuses and have a low fire heat release rate. Standard fire rise curves do not apply to such tunnels. In this study, a coupled method of computational fluid dynamics (CFD) and the finite element method (FEM) was used to simulate the structural temperature distribution in tunnels.

View Article and Find Full Text PDF

Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction.

Plants (Basel)

December 2024

Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!