The vast majority of chemistry and biology occurs in solution, and new label-free analytical techniques that can help resolve solution-phase complexity at the single-molecule level can provide new microscopic perspectives of unprecedented detail. Here, we use the increased light-molecule interactions in high-finesse fiber Fabry-Pérot microcavities to detect individual biomolecules as small as 1.2 kDa with signal-to-noise ratios >100, even as the molecules are freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of sub-populations in mixed samples. Strikingly, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight can also be resolved. Detection is based on a novel molecular velocity filtering and dynamic thermal priming mechanism leveraging both photo-thermal bistability and Pound-Drever-Hall cavity locking. This technology holds broad potential for applications in life and chemical sciences and represents a major advancement in label-free single-molecule techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055403PMC
http://dx.doi.org/10.1101/2023.03.24.534170DOI Listing

Publication Analysis

Top Keywords

label-free observation
4
observation individual
4
individual solution
4
solution phase
4
phase molecules
4
molecules vast
4
vast majority
4
majority chemistry
4
chemistry biology
4
biology occurs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!