The trillions of microorganisms inhabiting the human gut are intricately linked to human health. At the species abundance level, correlational studies have connected specific bacterial taxa to various diseases. While the abundances of these bacteria in the gut serve as good indicators for disease progression, understanding the functional metabolites they produce is critical to decipher how these microbes influence human health. Here, we report a unique biosynthetic enzyme-guided disease correlation approach to uncover microbial functional metabolites as potential molecular mechanisms in human health. We directly connect the expression of gut microbial sulfonolipid (SoL) biosynthetic enzymes to inflammatory bowel disease (IBD) in patients, revealing a negative correlation. This correlation is then corroborated by targeted metabolomics, identifying that SoLs abundance is significantly decreased in IBD patient samples. We experimentally validate our analysis in a mouse model of IBD, showing that SoLs production is indeed decreased while inflammatory markers are increased in diseased mice. In support of this connection, we apply bioactive molecular networking to show that SoLs consistently contribute to the immunoregulatory activity of SoL-producing human microbes. We further reveal that sulfobacins A and B, two representative SoLs, primarily target Toll-like receptor 4 (TLR4) to mediate immunomodulatory activity through blocking TLR4's natural ligand lipopolysaccharide (LPS) binding to myeloid differentiation factor 2, leading to significant suppression of LPS-induced inflammation and macrophage M1 polarization. Together, these results suggest that SoLs mediate a protective effect against IBD through TLR4 signaling and showcase a widely applicable biosynthetic enzyme-guided disease correlation approach to directly link the biosynthesis of gut microbial functional metabolites to human health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055157 | PMC |
http://dx.doi.org/10.1101/2023.03.16.533047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!