is an opportunistic human pathogen notorious for its remarkable capacity of multi-drug resistance, and has become one of the most important model bacteria in clinical bacteriology research. Quantitative real-time PCR is a reliable method widely used in gene expression analysis, for which the selection of a set of appropriate housekeeping genes is a key prerequisite for the accuracy of the results. However, it is easy to overlook that the expression level of housekeeping gene may vary in different conditions, especially in the condition of molecular microbiology assays, where tested strains are generally cultured under the pre-set antibiotic selection pressures, and how this affects the stability of commonly used housekeeping genes remains unclear. In this study, the expression stability of ten classic housekeeping genes ( and ) under the pressure of eight laboratory commonly used antibiotics (kanamycin, gentamycin, tetracycline, chloramphenicol, hygromycin B, apramycin, tellurite, and zeocin) were tested. Results showed that the stability of housekeeping gene expression was indeed affected by the types of antibiotics added, and of course the best reference gene set varied for different antibiotics. This study provides a comprehensive summary of the effects of laboratory antibiotics on the stability of housekeeping genes in , highlighting the necessity to select housekeeping genes according to the type of antibiotics used in the initial stage of experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040570PMC
http://dx.doi.org/10.3389/fmicb.2023.1140515DOI Listing

Publication Analysis

Top Keywords

housekeeping genes
20
housekeeping gene
12
housekeeping
8
commonly antibiotics
8
molecular microbiology
8
microbiology assays
8
gene expression
8
stability housekeeping
8
antibiotics
6
stability
5

Similar Publications

Introduction: , a genus within the Zingiberales order, is renowned for its diverse morphology, suggesting a rich genetic reservoir. However, genetic research on plants within the family has primarily focused on taxonomy and phylogenetics, with limited exploration into other genetic aspects, particularly the chloroplast genome. Given the significance of chloroplast genomes in evolutionary studies, a deeper understanding of their structure and diversity within Heliconia is essential.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

Root-knot nematodes (RKN) of the genus Meloidogyne are obligatory plant endoparasites that cause substantial economic losses to agricultural production and impact the global food supply. These plant parasitic nematodes belong to the most widespread and devastating genus worldwide, yet few measures of control are available. The most efficient way to control RKN is deployment of resistance genes in plants.

View Article and Find Full Text PDF

Global epidemiology of Mycobacterium tuberculosis lineage 4 insights from Ecuadorian genomic data.

Sci Rep

January 2025

Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.

Tuberculosis is a global public health concern, and understanding Mycobacterium tuberculosis transmission routes and genetic diversity of M. tuberculosis is crucial for outbreak control. This study aimed to explore the genomic epidemiology and genetic diversity of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!