While monitoring expression of recombinant proteins is essential for obtaining high-quality biopharmaceutical and biotechnological products, existing assays for recombinant protein detection are laborious, time-consuming and expensive. This paper presents a microfluidic approach to rapid and cost-effective detection of tag-fused recombinant proteins via a dual-aptamer sandwich assay. Our approach addresses limitations in current methods for both dual-aptamer assays and generation of aptamers for such assays by first using microfluidic technology to isolate the aptamers rapidly and then employing these aptamers to implement a microfluidic dual-aptamer assay for tag-fused recombinant protein detection. The use of microfluidic technology enables the fast generation of aptamers and rapid detection of recombinant proteins with minimized consumption of reagents. In addition, compared with antibodies, aptamers as low-cost affinity reagents with an ability of reversible denaturation further decreases the cost of recombinant protein detection. For demonstration, an aptamer pair is isolated rapidly toward His-tagged IgE within two days, and then used in the microfluidic dual-aptamer assay for detecting His-tagged IgE in cell culture media within 10 min and with a limit of detection of 7.1 nM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041396PMC
http://dx.doi.org/10.1016/j.microc.2023.108454DOI Listing

Publication Analysis

Top Keywords

recombinant proteins
16
microfluidic dual-aptamer
12
recombinant protein
12
protein detection
12
dual-aptamer sandwich
8
sandwich assay
8
rapid cost-effective
8
cost-effective detection
8
detection recombinant
8
tag-fused recombinant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!